Articles
All articles | Recent articles
A Study of a Surrogate Nuclear Thermal Propulsion Fuel Element
D.S. Tucker, A. Preston, N. Jered, A. Cunningham
Idaho National Laboratory, Idaho Falls, Idaho 83401
received March 8, 2023, received in revised form May 11, 2023, accepted May 23, 2023
Pages 49-54 DOI: 10.4416/JCST2023-00001
Abstract
A surrogate fuel, zirconium carbide/titanium nitride, has been prepared using a simple method to obtain a more uniform distribution of titanium nitride in the zirconium carbide matrix. Powders were sintered using spark plasma sintering at 2 023 K and 2 123 K using a modified sintering profile. This resulted in a fairly uniform distribution of titanium nitride in the zirconium carbide matrix with a density of 95 % of theoretical at 2 123 K. Scanning electron microscopy, indentation hardness and X-ray diffraction results are given.
Download Full Article (PDF)
Keywords
Carbide, nitride, spark plasma sintering, X-ray diffraction, propulsion fuel element
References
1 Tucker, D.S.: Using Spark Plasma Sintering to Produce Nuclear Propulsion Fuel Elements, Advances in Composite Materials Development, 978 – 1-78984 – 130 – 5, 2019
2 Tucker, W.C., Chowdhury, P., Abbott, L.J., Haskins, J.B.: Toward an In-Depth Material Model for CERMET Nuclear Thermal Rocket Fuel Elements, Nucl. Tech., 207, 825 – 835, (2021).
3 Knight, T.W., Anghaie, S.J.: Processing and Fabrication of Mixed Uranium/Refractory Metal Carbide Fuels with Liquid Phase Sintering, J. Nucl. Mater., 306, 54 – 60, (2002).
4 Gates, J.T., Denig, A., Ahmed, R., Mehta, V.K., Kotlyar, D.: Low-Enriched CERMET-Based Fuel Options for Nuclear Thermal Propulsion Engine, Nucl. Eng. Design., 331, 313 – 330, (2018).
5 Ratfery, A.M., Seibert, R., Brown, D., Trammell, M., Nelson, A., Terrani, K.: Fabrication of UN-Mo CERMET using Advanced Manufacturing Techniques, NETS, April 6 – 9, 2020.
6 Houts, M.G., Joyner, C.R., Abrams, J., Witter, J., Venneri, P.: Versatile Nuclear Thermal Propulsion (NTP), 70th Intern. Astronautical Congress, Oct. 21 – 25, 2019.
7 Tucker, D.S., Barnes, M.W., Hone, L., Cook, S.: High Density Uniformly Distributed W/UO2 for use in Nuclear Thermal Propulsion, J. Nucl. Mater., 486 246 – 249 (2017).
8 Tucker, D.S., Wu, Y., Burns, J.: Uranium Migration in Spark Plasma Sintered W/UO2 CERMETS, J. Nucl. Mater., 500, 141 – 144, (2018).
9 O'Brien, R.C., Ambrosi, R.M., Bannister, N.P., Howe, S.D., Atkinson, H.V.: Safe Radioisotope Thermoelectric Generators and Heat Sources for Space Applications, J. Nucl. Mater., 377, 506 – 521, (2008).
10 Wang, X., Xie, Y., Guo, H., Blest, O, Van der., Vleugels, J.: Sintering of WC-Co Powder with Nanocrystalline WC by Spark Plasma Sintering, Rare Met., 25, 246 – 250, (2006).
11 Nguyen, V-H., Delbari, S.A., Asl, M.S., Le, Q.V., Jang, H.W., Shokouhimehr, M., Mohammadi, M.: A Novel Spark Plasma Sintered TiC-ZrN-C Composite with Enhanced Flexural Strength, Ceram. Int., 46, 29022 – 29032, (2020).
12 Ryu, H.J., Lee, Y.W., Cha, S.I., Hong, S.H.: Sintering Behavior and Microstructures of Carbides and Nitrides for Inert Matrix Fuel by Spark Plasma Sintering, J. Nucl. Mater., 352, 341 – 348, (2006).
13 Atkinson, H.V., Davies, S.: Fundamental Aspects of Hot Isostatic Pressing: An Overview, Metall. Mater. Trans. A, 31, 2981, (2000).
14 Carpay, F.M.A.: The effect of pore drag on ceramic microstructures, in: Proceedings of Ceramic Microstructures '76, Westview, Boulder CO, 1977, p. 171, ISBN: 0306426811.
15 German, R.M.: Sintering Theory and Practice, John Wiley, New York, 1996, ISBN 0 – 471 – 05786-X.
16 O'Brien, R.C., Ambrosi, R.M., Bannister, N.P., Howe, S.D., Atkinson, H.V.: Spark Plasma Sintering of Simulated Radioisotope Materials with Tungsten CERMETS, J. Nucl. Mater., 393, 108, (2009).
17 Teber, A., Schoenstein, F., Tetard, F., Abdellaoui, M., Jouini, N.: Effect of SPS Process Sintering on Microstructure and Mechanical Properties of Nanocrystalline TiC for Tools Application, Intern. J. Refract. Met. H., 30, 64, (2012).
18 Shackelford, J.F., Alexander, W.: CRC materials and science engineering handbook: CRC press, 2010.
19 Liu, N., Xu, Y.D., Li, H., Li, G.H., Zhang, L.D.: Effect of Nano-Micro TiN Additions on the Microstructure and Mechanical Properties of TiC Based CERMETS, J. Eur. Ceram Soc., 22, 2409, (2002).
20 Moshtaghioun, B.M., Gomez-Garcia, D., Dominguez-Rodriguez, A.: Exotic Grain Growth Law in Twinned Boron Carbide under Electric Fields, J. Eur. Ceram Soc., 38, 1190, (2018).
21 Kuwahara, H., Mazaki, N., Takahashi, M., Watanabe, T., Yang, X., Aizawa, T.: Mechanical Properties of Bulk Sintered Titanium Nitride Ceramics, Mater. Sci. Eng. A, 319 – 321, 687, (2001).
22 Kawai, N., Lin, J., Youmaru, H., Shinya, A.: Effect of Three Luting Agents and Cyclic Impact Loading on Shear Bond Strengths to ZrO2 with Tribochemical Treatment, J. Dent. Sci., 7, 118, (2012).
23 Kinney, G.F.: Engineering Properties and Applications of Plastics, John Wiley and Sons, New York, 1957.
24 Oetting, F.L., Leitnaker, J.M.: The Chemical Thermodynamic Properties of Nuclear Materials I: Uranium Mononitride, J. Chem. Thermodyn., 4, 199, (1972).
25 NIST Chemistry Webbook, SRD 69, Titanium Nitride.
Copyright
Göller Verlag GmbH
Acknowledgments
The authors would like to acknowledge the NASA Space Nuclear Project for funding this study.