• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Sintering and High-Temperature Strength of (Ti,Hf,Ta)C Medium-Entropy Ceramics Consolidated by Biphasic Carbide Powders

F.L. Qin1,2, X.G. Wang2, X.F. Wang2, Q.Q. Yang2, R.Z. Li2, W. Gao2, C. Zhang1, D.Y. Jiang2

1 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050, China

received Febuary 15, 2023, received in revised form March 24, 2023, accepted March 27, 2023

Vol. 14, No. 1, Pages 39-48   DOI: 10.4416/JCST2023-00002

Abstract

This study reports for the first time on the preparation of medium-entropy (Ti,Hf,Ta)C-based powders with biphasic composition of Hf(Ti,Ta)C and Ti,Ta(Hf)C based on carbothermal reduction of TiO2, Ta2O5 and HfO2 with graphite. The synthesized (Ti,Hf,Ta)C-based powders had a fine particle size of 200 – 300 nm and low oxygen content of 0.42 wt%. After sintering at 2 100 °C for 1 h, single-phase (Ti,Hf,Ta)C ceramics were obtained. The effect of the Hf element content on the densification and grain growth of (Ti,Hf,Ta)C medium-entropy ceramics was investigated and compared with monocarbide ceramics (TiC, HfC, TaC). The final sintered medium-entropy (Ti,Hf,Ta)C ceramics prepared by means of hot pressing at 2 100 °C had fine grains (0.92 ± 0.4 μm) and a relative density of 93.3 %. The Hf element significantly inhibited the densification and grain growth of (Ti,Hf,Ta)C ceramics due to its lattice distortion and the sluggish diffusion effects. The equimolar ratio (Ti,Hf,Ta)C corresponding to (Ti1/3Hf1/3Ta1/3)C had ultra-high strength at 1 600 °C (639 ± 38 MPa) and 1 800 °C (697 ± 26 MPa). The ultra-high strength of (Ti,Hf,Ta)C medium-entropy ceramics is the result of the collaborative optimization of the superfine microstructure (grain size of 0.92 ± 0.4 μm) and strong grain boundary strength.

Download Full Article (PDF)

Keywords

Medium-entropy ceramics (Ti,Hf,Ta)C, sluggish diffusion effect, high-temperature flexural strength.

References

1 Castle, E.G., Csanadi, T., Grasso, S., Dusza, J., Reece, M.: Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep., 8, 8 – 20, (2018).

2 Failla, S., Galizia, P., Fu, S., Grasso, S., Sciti, D.: Formation of high entropy metal diborides using arc-melting and combinatorial approach to study quinary and quaternary solid solutions, J. Eur. Ceram. Soc., 40, 588 – 593, (2020).

3 Xiang, H., Xing, Y., Dai, F.Z., Wang, H.J., Su, L., Miao, L., Zhang, G.J., Wang, Y.G., Qi, X.W., Yao, L., Wang, H.L., Zhao, B., Li, J.Q., Zhou, Y.C.: High-entropy ceramics: Present status, challenges, and a look forward, J. Adv. Ceram., 10, 385 – 441, (2021).

4 Fahrenholtz, W.G., Hilmas, G.E.: Ultra-high temperature ceramics: materials for extreme environments, Scripta Mater., 129, 94 – 99, (2017).

5 Nisar, A., Zhang, C., Boesl, B., Agarwal, A.: A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics, Ceram. Int., 46, 25845a – 25853a, (2020).

6 Liu, J., Yang, Q.Q., Zou, J., Wang, W.M., Wang, X.G., Fu, Z.Y.: Strong high-entropy diboride ceramics with oxide impurities at 1800 °C, Sci. China Mater., 84, 1 – 10, (2023).

7 Demirskyi, D., Nishimurab, T., Suzuki, T.S., Sakka, Y., Vasylkivb, O., Yoshimi, K.: High-temperature toughening in ternary medium entropy (Ta1/3Ti1/3Zr1/3)C carbide consolidated using spark plasma sintering, J. Am. Ceram. Soc., 8, 1262 – 1270, (2020).

8 Yang, Q.Q., Wang, X.G., Wu, P., Wang, X.F., Zhang, C., Zhang, G.J., Jiang, D.Y.: Ultra-high strength medium entropy (Ti,Zr,Ta)C ceramics at 1800 °C sintered from medium-entropy powders with a core-shell structure, J. Am. Ceram. Soc., 105, 823 – 829, (2022).

9 Wang, X.F., Wang, X.G., Yang, Q.Q., Dong, H.L., Zhang, C., Zhang, G.J., Jiang, D.Y.: High-strength medium-entropy (Ti,Zr,Hf)C ceramics up to 1800 °C, J. Am. Ceram. Soc., 104, 2436 – 2441, (2021).

10 Wang, H.X., Liu, Q.M., Wang, Y.G.: Research Progress of High-entropy Transition Metal Carbide Ceramics, J. Inorg. Mater., 36, 355 – 364, (2021).

11 Zhang, G.J., Wang, Y.J.: Non-order is the New Order: High-entropy Ceramics, J. Inorg. Mater., 36, 337 – 338, (2021).

12 Simonenko, E.P., Sevast'yanov, D.V., Simonenko, N.P., Sevast'yanov, V.G., Kuznetsova, N.T.: Promising ultra-high-temperature ceramic materials for aerospace applications, Russ. J. Inorg. Chem., 58, 1669 – 1693, (2013).

13 Chen, T.K., Shun, T.T., Yeh, J.W., Wong, M.S.: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 188 – 189, 193 – 200, (2004).

14 Hsu, C.Y., Yeh, J.W., Chen, S.K., Shun, T.T.: Wear resistance and high temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans., 35A, 1465 – 1469, (2004).

15 Qin, Y., Liu, J.X., Liang, Y.C., Zhang, G.J.: Equiatomic 9-cation high-entropy carbide ceramics of the IVB, VB, and VIB groups and thermodynamic analysis of the sintering process, J. Adv. Ceram., 11, 1082 – 1092, (2022).

16 Zhang, Y., Sun, S.K., Guo, W.M., Xu, L., Zhang, W., Lin, H.T.: Optimal preparation of high-entropy boride-silicon carbide ceramics, J. Adv. Ceram., 10, 173 – 180, (2021).

17 Xu, L., Guo, W.M., Zou, J., Zhou, Y.Z., Liang, H.Y., Qiu, S.H., Lin, H.T., Fu, Z.: Low-temperature densification of high entropy diboride based composites with fine grains and excellent mechanical properties, Compos. Part B-Eng., 247, 110331, (2022).

18 Qin, M.D., Yan, Q.Z., Liu, Y., Luo, J.: A new class of high-entropy M3B4 borides, J. Adv. Ceram., 10, 166 – 172, (2021).

19 Demirskyi, D., Suzuki, T.S., Yoshimi, K., Vasylkiv, O.: Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders, Open Ceramics., 2, 100015, (2020).

20 Sun, Y.N., Ye, L., Zhao, W. Y., Chen, F.H., Qiu, W.F., Han, W.J., Liu, W., Zhao, T.: Synthesis of High-entropy Carbide Nano Powders via Liquid Polymer Precursor Route, J. Inorg. Mater. 36, 393 – 398, (2021).

21 Feng, L., Chen, W.T., Fahrenholtz, W.G., Hilmas, G.E.: Strength of single-phase high-entropy carbide ceramics up to 2300 °C, J. Am. Ceram. Soc., 104, 419 – 427, (2021).

22 Li, F., Lu, Y., Wang, X.G., Bao, W.C., Liu, J.X., Xu, F.F., Zhang, G.J.: Liquid precursor-derived high-entropy carbide nanopowders, Ceram. Int., 45, 22437 – 22441, (2019).

23 Guo, X.J., Bao, W.C., Liu, J.X., Wang, X.G., Zhang, G.J., Xu, F.F.: Study on the Solid Solution Structures of High-entropy Ceramics by Transmission Electron Microscopy, J. Inorg. Mater., 36, 365 – 374, (2021).

24 Zhang, W., Chen, L., Xu, C.G., Lv, X.M., Wang, Y.J., Ouyang, J.H., Zhou, Y.: Grain growth kinetics and densification mechanism of (TiZrHfVNbTa)C high-entropy ceramic under pressureless sintering, J. Mater. Sci. Technol., 110, 57 – 64, (2022).

25 Yang, Q.Q., Wang, X.G., Bao, W.C., Wu, P., Wang, X.F., Guo, X.J., Zhang, C., Zhang, G.J., Jiang, D.Y.: Influence of equiatomic Zr/(Ti,Nb) substitution on microstructure and ultra-high strength of (Ti,Zr,Nb)C medium-entropy ceramics at 1900 °C, J. Adv. Ceram., 11, 1457 – 1465, (2022).

26 Waring, J.L., Roth, R.S.: Effect of oxide additions on the polymorphism of tantalum pentoxide system Ta2O5-TiO2, J. Research of the National Bureau of Standards-A. Phys. Chem., 2, 175 – 186, (1968).

27 Liu, J.X., Kan, Y.M., Zhang, G.J.: Synthesis of ultra-fine hafnium carbide powder and its pressureless sintering, J. Am. Ceram. Soc., 93, 980 – 986, (2010).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH