Articles
All articles | Recent articles
Sintering and High-Temperature Strength of (Ti,Hf,Ta)C Medium-Entropy Ceramics Consolidated by Biphasic Carbide Powders
F.L. Qin1,2, X.G. Wang2, X.F. Wang2, Q.Q. Yang2, R.Z. Li2, W. Gao2, C. Zhang1, D.Y. Jiang2
1 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050, China
received Febuary 15, 2023, received in revised form March 24, 2023, accepted March 27, 2023
Vol. 14, No. 1, Pages 39-48 DOI: 10.4416/JCST2023-00002
Abstract
This study reports for the first time on the preparation of medium-entropy (Ti,Hf,Ta)C-based powders with biphasic composition of Hf(Ti,Ta)C and Ti,Ta(Hf)C based on carbothermal reduction of TiO2, Ta2O5 and HfO2 with graphite. The synthesized (Ti,Hf,Ta)C-based powders had a fine particle size of 200 – 300 nm and low oxygen content of 0.42 wt%. After sintering at 2 100 °C for 1 h, single-phase (Ti,Hf,Ta)C ceramics were obtained. The effect of the Hf element content on the densification and grain growth of (Ti,Hf,Ta)C medium-entropy ceramics was investigated and compared with monocarbide ceramics (TiC, HfC, TaC). The final sintered medium-entropy (Ti,Hf,Ta)C ceramics prepared by means of hot pressing at 2 100 °C had fine grains (0.92 ± 0.4 μm) and a relative density of 93.3 %. The Hf element significantly inhibited the densification and grain growth of (Ti,Hf,Ta)C ceramics due to its lattice distortion and the sluggish diffusion effects. The equimolar ratio (Ti,Hf,Ta)C corresponding to (Ti1/3Hf1/3Ta1/3)C had ultra-high strength at 1 600 °C (639 ± 38 MPa) and 1 800 °C (697 ± 26 MPa). The ultra-high strength of (Ti,Hf,Ta)C medium-entropy ceramics is the result of the collaborative optimization of the superfine microstructure (grain size of 0.92 ± 0.4 μm) and strong grain boundary strength.
Download Full Article (PDF)
Keywords
Medium-entropy ceramics (Ti,Hf,Ta)C, sluggish diffusion effect, high-temperature flexural strength.
References
1 Castle, E.G., Csanadi, T., Grasso, S., Dusza, J., Reece, M.: Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep., 8, 8 – 20, (2018).
2 Failla, S., Galizia, P., Fu, S., Grasso, S., Sciti, D.: Formation of high entropy metal diborides using arc-melting and combinatorial approach to study quinary and quaternary solid solutions, J. Eur. Ceram. Soc., 40, 588 – 593, (2020).
3 Xiang, H., Xing, Y., Dai, F.Z., Wang, H.J., Su, L., Miao, L., Zhang, G.J., Wang, Y.G., Qi, X.W., Yao, L., Wang, H.L., Zhao, B., Li, J.Q., Zhou, Y.C.: High-entropy ceramics: Present status, challenges, and a look forward, J. Adv. Ceram., 10, 385 – 441, (2021).
4 Fahrenholtz, W.G., Hilmas, G.E.: Ultra-high temperature ceramics: materials for extreme environments, Scripta Mater., 129, 94 – 99, (2017).
5 Nisar, A., Zhang, C., Boesl, B., Agarwal, A.: A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics, Ceram. Int., 46, 25845a – 25853a, (2020).
6 Liu, J., Yang, Q.Q., Zou, J., Wang, W.M., Wang, X.G., Fu, Z.Y.: Strong high-entropy diboride ceramics with oxide impurities at 1800 °C, Sci. China Mater., 84, 1 – 10, (2023).
7 Demirskyi, D., Nishimurab, T., Suzuki, T.S., Sakka, Y., Vasylkivb, O., Yoshimi, K.: High-temperature toughening in ternary medium entropy (Ta1/3Ti1/3Zr1/3)C carbide consolidated using spark plasma sintering, J. Am. Ceram. Soc., 8, 1262 – 1270, (2020).
8 Yang, Q.Q., Wang, X.G., Wu, P., Wang, X.F., Zhang, C., Zhang, G.J., Jiang, D.Y.: Ultra-high strength medium entropy (Ti,Zr,Ta)C ceramics at 1800 °C sintered from medium-entropy powders with a core-shell structure, J. Am. Ceram. Soc., 105, 823 – 829, (2022).
9 Wang, X.F., Wang, X.G., Yang, Q.Q., Dong, H.L., Zhang, C., Zhang, G.J., Jiang, D.Y.: High-strength medium-entropy (Ti,Zr,Hf)C ceramics up to 1800 °C, J. Am. Ceram. Soc., 104, 2436 – 2441, (2021).
10 Wang, H.X., Liu, Q.M., Wang, Y.G.: Research Progress of High-entropy Transition Metal Carbide Ceramics, J. Inorg. Mater., 36, 355 – 364, (2021).
11 Zhang, G.J., Wang, Y.J.: Non-order is the New Order: High-entropy Ceramics, J. Inorg. Mater., 36, 337 – 338, (2021).
12 Simonenko, E.P., Sevast'yanov, D.V., Simonenko, N.P., Sevast'yanov, V.G., Kuznetsova, N.T.: Promising ultra-high-temperature ceramic materials for aerospace applications, Russ. J. Inorg. Chem., 58, 1669 – 1693, (2013).
13 Chen, T.K., Shun, T.T., Yeh, J.W., Wong, M.S.: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 188 – 189, 193 – 200, (2004).
14 Hsu, C.Y., Yeh, J.W., Chen, S.K., Shun, T.T.: Wear resistance and high temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans., 35A, 1465 – 1469, (2004).
15 Qin, Y., Liu, J.X., Liang, Y.C., Zhang, G.J.: Equiatomic 9-cation high-entropy carbide ceramics of the IVB, VB, and VIB groups and thermodynamic analysis of the sintering process, J. Adv. Ceram., 11, 1082 – 1092, (2022).
16 Zhang, Y., Sun, S.K., Guo, W.M., Xu, L., Zhang, W., Lin, H.T.: Optimal preparation of high-entropy boride-silicon carbide ceramics, J. Adv. Ceram., 10, 173 – 180, (2021).
17 Xu, L., Guo, W.M., Zou, J., Zhou, Y.Z., Liang, H.Y., Qiu, S.H., Lin, H.T., Fu, Z.: Low-temperature densification of high entropy diboride based composites with fine grains and excellent mechanical properties, Compos. Part B-Eng., 247, 110331, (2022).
18 Qin, M.D., Yan, Q.Z., Liu, Y., Luo, J.: A new class of high-entropy M3B4 borides, J. Adv. Ceram., 10, 166 – 172, (2021).
19 Demirskyi, D., Suzuki, T.S., Yoshimi, K., Vasylkiv, O.: Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders, Open Ceramics., 2, 100015, (2020).
20 Sun, Y.N., Ye, L., Zhao, W. Y., Chen, F.H., Qiu, W.F., Han, W.J., Liu, W., Zhao, T.: Synthesis of High-entropy Carbide Nano Powders via Liquid Polymer Precursor Route, J. Inorg. Mater. 36, 393 – 398, (2021).
21 Feng, L., Chen, W.T., Fahrenholtz, W.G., Hilmas, G.E.: Strength of single-phase high-entropy carbide ceramics up to 2300 °C, J. Am. Ceram. Soc., 104, 419 – 427, (2021).
22 Li, F., Lu, Y., Wang, X.G., Bao, W.C., Liu, J.X., Xu, F.F., Zhang, G.J.: Liquid precursor-derived high-entropy carbide nanopowders, Ceram. Int., 45, 22437 – 22441, (2019).
23 Guo, X.J., Bao, W.C., Liu, J.X., Wang, X.G., Zhang, G.J., Xu, F.F.: Study on the Solid Solution Structures of High-entropy Ceramics by Transmission Electron Microscopy, J. Inorg. Mater., 36, 365 – 374, (2021).
24 Zhang, W., Chen, L., Xu, C.G., Lv, X.M., Wang, Y.J., Ouyang, J.H., Zhou, Y.: Grain growth kinetics and densification mechanism of (TiZrHfVNbTa)C high-entropy ceramic under pressureless sintering, J. Mater. Sci. Technol., 110, 57 – 64, (2022).
25 Yang, Q.Q., Wang, X.G., Bao, W.C., Wu, P., Wang, X.F., Guo, X.J., Zhang, C., Zhang, G.J., Jiang, D.Y.: Influence of equiatomic Zr/(Ti,Nb) substitution on microstructure and ultra-high strength of (Ti,Zr,Nb)C medium-entropy ceramics at 1900 °C, J. Adv. Ceram., 11, 1457 – 1465, (2022).
26 Waring, J.L., Roth, R.S.: Effect of oxide additions on the polymorphism of tantalum pentoxide system Ta2O5-TiO2, J. Research of the National Bureau of Standards-A. Phys. Chem., 2, 175 – 186, (1968).
27 Liu, J.X., Kan, Y.M., Zhang, G.J.: Synthesis of ultra-fine hafnium carbide powder and its pressureless sintering, J. Am. Ceram. Soc., 93, 980 – 986, (2010).
Copyright
Göller Verlag GmbH