Articles
All articles | Recent articles
High-Performance, Corrosion-Resistance Sealing Glasses for Primary Lithium Batteries: Preparation, Properties and Applications
Z. Wang1, S.J. Hua1, W.H. Liu1, W.B. Yang1, Q. Feng1,2
1 Xi'an Seal Electronic Material Technology Co., Ltd. Xi'an, 710201 China
2 Northwest Institute for Non-Ferrous Metal Research Xi'an, 710016 China
received December 15, 2022, received in revised form March 20, 2023, accepted March 27, 2023
Vol. 14, No. 1, Pages 31-38 DOI: 10.4416/JCST2022-00015
Abstract
The SiO2-B2O3-Al2O3-Na2O glass system was selected as the main body. The effects of MgO additions and the ratios of SiO2/B2O3 on the performance of the glasses were investigated. The corrosion mechanism model of glass in the battery was discussed. The findings were that adding MgO can increase the characteristic temperature of the glass, it also can strengthen the glass network structure and improve the corrosion resistance of the glass in the electrolyte. Reducing the ratio of SiO2/B2O3 can improve the performance of the glass. When the ratio of the SiO2/B2O3 reached 3.7, the performance of the glass was best overall. Therefore, when the amount of MgO reached 2 mol% and the ratio of the SiO2/B2O3 reached 3.7, the glass-to-metal seals for lithium primary battery lids exhibited excellent corrosion resistance, with the corroded area of the glass being close to zero, so the glass seal can meet customer and market requirements.
Download Full Article (PDF)
Keywords
Glass, sealing, performance, corrosion resistance.
References
1 Zhang, L., Liang, Y.C., Niyato, D.: 6G Visions: Mobile Ultra-Broadband, Super Internet-of-Things and Artificial Intelligence, China Commun., 16 [8], 1 – 14, (2019). doi: https://doi.org/10.23919/JCC.2019.08.001.
2 Sethi, P., Sarangi, S.R.: Internet of Things: Architectures, Protocols, and Applications, J Electr. Comput. Eng., 1, 1 – 25, (2017). doi: https://doi.org/10.1155/2017/9324035.
3 Osuwa, A.A., Ekhoragbon, E.B., Fat, L.T.: Application of artificial intelligence in Internet of Things, International Conference on Computational Intelligence & Communication Networks(CICN), 169 – 173, (2017).
4 Pramanik, P.K.D., Pal, S., Choudhury, P.: Beyond Automation: The Cognitive IoT. Artificial Intelligence Brings Sense to the Internet of Things, Cognitive Computing for Big Data Systems Over IoT, 14, (2018). doi: https://doi.org/10.1007/978 – 3-319 – 70688 – 7_1.
5 Yoko, S., Yanagimoto, T.: Negative electrode for lithium primary battery and lithium primary battery, U.S. Patent. No. 8,236,451, 2012.
6 Yang, Z.G., Stevenson, J.W., Meinhardt, K.D.: Chemical interactions of barium-calcium-aluminosilicate-based sealing glasses with oxidation resistant alloys, Solid State Ionics, 160 [3 – 4], 213 – 225, (2003). doi: https://doi.org/10.1016/S0167 – 2738(03)00160 – 7.
7 Komatsu, T., Inoue, T., Tasheva, T., et al.: Correlation between thermal expansion coefficient and interionic interaction parameter in ZnO-Bi2O3-B2O3 glasses, J Ceram. Soc. Jpn., 126 [1], 8 – 15, (2018,). doi: https://doi.org/10.2109/jcersj2.17176.
8 Reis, S.T., Brow, R.K.: Designing sealing glasses for solid oxide fuel cells, J Mater. Eng. Perform., 15 [4], 410 – 413, (2006).
9 Rulon, R.M.: Glass To Metal Seals, Introduction to Glass Science, Springer US, 1972.
10 Keding, R., Rüssel, C., Pascual, M.J., et al.: Corrosion mechanism of borosilicate sealing glasses in molten carbonates studied by impedance spectroscopy, J. Electroanal Chem., 528 [1 – 2], 184 – 189, (2002). doi: https://doi.org/10.1016/S0022 – 0728(02)00714 – 3.
11 Wang, Q.Y., Wang, S., Zhou, G., et al.: Progress on the failure analysis of lithium battery, Acta. Phys. Ain-ch. Ed., 67 [12], 128501, (2018). doi: https://doi.org/10.7498/aps.67.20180757.
12 Kim, B.S., Lim, E.S., Lee, J.H., et al.: Effect of structure change on thermal and dielectric characteristics in low-temperature firing Bi2O3-B2O3-ZnO glasses, J. Mater. Sci., 42 [12], 4260 – 4264, (2007).
13 Brow, R.K., Tallant, D.R.: Structural design of sealing glasses, J. Non-cryst. Solids, 222, 396 – 406, (1997).
14 Wang, X., Ou, D.R., Shang, L., et al.: Sealing Performance and Chemical Compatibility of SrO-La2O3-Al2O3-SiO2 Glasses with Bare and Coated Ferritic Alloy, Ceram. Int., 42 [12], 14168 – 14174, (2016). doi: https://doi.org/10.1016/j.ceramint.2016.06.040.
15 Furuyama, T., Yonehara, M., Arimoto, S., et al.: Development of Highly Chemoselective Bulky Zincate Complex, tBu4ZnLi2: Design, Structure, and Practical Applications in Small-/Macromolecular Synthesis, Chemistry, 14 [33], 10348 – 10356, (2008). doi: https://doi.org/10.1002/chem.200800536.
16 Nie, H., Zhang, J., Qi, Y., et al.: Influence of composition on the structure and properties of SrO-Sb2O3-P2O5 low-melting sealing glasses, Mater. Sci-Poland., 33 [4], 862 – 866, (2015). doi: https://doi.org/10.1515/msp-2015 – 0117.
17 Hülsenberg, D., Harnisch, A., Bismarck, A.: Microstructuring of Glasses, Springer Series in Materials Science, 87, (2008).
18 Cheng, Y., Xiao, H.N., Guo, W.M.: Influence of compositions on sealing temperature and properties of lead borate non-crystallizing sealing glasses, Mater. Sci. Eng.: A, 464 [1 – 2], 210 – 215, (2007). doi: https://doi.org/10.1016/j.msea.2007.01.146.
19 Kim, Y., Morita, K.: Thermal Conductivity of Molten B2O3, B2O3-SiO2, Na2O-B2O3, and Na2O-SiO2 Systems, J. Am. Ceram. Soc., 98 [5], 1588 – 1595, (2015). doi: https://doi.org/10.1111/jace.13490.
20 Zhou, D., Jones, B.G.: Boron Concentration Model and Effects of Boron Holdup on Axial Offset Anomaly (AOA) in PWRs, American Society of Mechanical Engineers, 35987, 829 – 834, 2002. doi: https://doi.org/10.1115/ICONE10 – 22636.
21 Bunker, B.C., Douglas, S.C., Quinn, R.K.: Glass corrosion in ambient temperature lithium battery headers, J. Mater. Res., 2 [2], 182 – 194, (1987). doi: https://doi.org/10.1557/JMR.1987.0182.
22 Pascual, M.J., Pascual, L., Valle, F.J., et al.: Corrosion of Borosilicate Sealing Glasses for Molten Carbonate Fuel Cells, J. Am. Ceram. Soc., 86 [11], 1918 – 1926, (2003). doi: https://doi.org/10.1111/j.1151 – 2916.2003.tb03582.x.
23 Brow, R.K., Watkins, R.D.: High expansion, lithium corrosion resistant sealing glasses, U.S. Patent. No. 5021307, (1991).
24 Theis, C.D., Fleming, D.A., Osenbach, J.W.: The corrosion behavior of BK-7 glasses for use in non-hermetic electro-optic devices, IEEE Transactions on Components & Packaging Technologies, 23 [4], 638 – 645, (2000). doi: https://doi.org/10.1109/6144.888847.
Copyright
Göller Verlag GmbH