• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Investigation into the Solid-Solution (Na1-xKx)2Mo2O7 Ceramic and the Effect on Sintering Property

X. Yuan1,2, H. Liu1, Y. Wei3, Y. Wang1, Q. Gao1

1 School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China
2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3 School of Foreign Languages, Anyang Institute of Technology, Anyang 455000, China

received May 30, 2022, received in revised form November 24, 2022, accepted November 25, 2022

Vol. 14, No. 1, Pages 11-16   DOI: 10.4416/JCST2022-00006

Abstract

Low-sintering-temperature (Na1-xKx)2Mo2O7 (0.0≤x≤0.2) ceramic was fabricated with the modified solid-phase sintering method. The sintering character and microwave dielectric property of the (Na1-xKx)2Mo2O7 (0.0≤x≤0.2) ceramic were studied systematically. With the modified solid phase sintering method and ion substitution, the mass transfer efficiency of the ceramic powder was improved in the sintering procedure, which decreased the sintering temperature of the Na2Mo2O7 ceramic from 575 °C to 440 °C. Among the components, the (Na0.8K0.2)2Mo2O7 ceramic was sintered well at 440 °C with a permittivity of 10.0, a Q × f value of 48 000 GHz and a temperature coefficient of -75 ppm/K. The modified solid-phase sintering method is a potential substitution for the conventional solid-state method and the ion substitution is an effective way to further lower the sintering temperature.

Download Full Article (PDF)

Keywords

Low sintering temperature, sintering performance, dielectric ceramic

References

1 Sebastian, M.T., Jantunen, H.:, Low-loss dielectric materials for LTCC applications: a review, Int. Mater. Rev., 53, 57 – 90, (2008).

2 Sebastian, M.T., Ubic, R., Jantunen, H.: Low-loss dielectric ceramic materials and their properties, Int. Mater. Rev., 60, 392 – 412, (2015).

3 Sebastian, M.T., Wang, H., Jantunen, H.: Low temperature co-fired ceramics with ultra-low sintering temperature: a review, Curr. Opin. Solid State Mater. Sci., 20, 151 – 170, (2016).

4 Braginsky, V.B., Ilschenko, V.S., Bagdassarov, K.S.: Experimental observation of fundamental microwave absorption in high quality dielectric crystals, Appl. Phys. A., 120, 300 – 305, (1987).

5 Yuan, X.F., Zhang, G.Q., Wang, H.: A novel solid solution (K1-xNax)2Mo2O7 (0.0 ≤ x ≤ 0.3) ceramics with ultralow sintering temperatures, J. Eur. Ceram. Soc., 38, 4967 – 4971, (2018).

6 Valant, M., Suvorov, D.: Processing and dielectric properties of sillenite compounds Bi12MO20-δ (M = Si, Ge, Ti, Pb, Mn, B1/2P1/2), J. Am. Ceram. Soc., 84, 2900 – 2904, (2001).

7 Zhang, P., Liu, J., Zhao, Y.: Effects of MgO-LiF addition on the sintering behavior and microwave dielectric properties of Li2MgTi3O8 ceramics, Mater. Lett., 162, 173 – 175, (2016).

8 Lin, H., Yang, A., Luo, L.: Microwave dielectric properties of low temperature co-fired glass-ceramic based on B2O3-La2O3-MgO glass with La(Mg0.5Ti0.5)O3 ceramics, Mater. Lett., 62, 611 – 614, (2008).

9 Huang, C.L., Yang, W.R.: Effect of CuO addition to Nd(Zn1/2Ti1/2)O3 ceramics on sintering behavior and microwave dielectric properties, Mater. Lett., 63, 103 – 105, (2009).

10 Wang, S.H., Zhou, H.P., Chen, K.X., et al.: Sintering and properties of CaO-Al2O3-B2O3-SiO2 system glass ceramics, Key Eng. Mater., 247, 389 – 392, (2003).

11 Zhang, G.Q., Guo, J., He, L., et al.: Ultra-low sintering temperature microwave dielectric ceramics based on Na2O-MoO3 binary system, J. Am. Ceram. Soc., 98, 528 – 533, (2015).

12 Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348 – 366, (1993).

13 Kim, K.S., Sang, H.S., Kim, S., et al.: Microwave dielectric properties of ceramic/glass composites with bismuth-zinc borosilicate glass. J. Ceram. Process. Res., 11, 47 – 51, (2010).

14 Zhou, D., Rall, C.A., Wang, H., et al.: Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 microwave dielectric ceramics, J. Am. Ceram. Soc., 93, 2147 – 2150, (2010).

15 Zhou, D., Pang, L.X., Guo, J., et al.: Phase evolution, phase transition, Raman spectra, infrared spectra, and microwave dielectric properties of low temperature firing (K0.5xBi1 – 0.5x)(MoxV1-x)O4 ceramics with scheelite related structure, Inorg. Chem., 50, 12733 – 12738, (2011).

16 Wang, S.F., Wang, Y.R., Hsu, Y.F., et al.: Ultra-low-fire Te2(Mo1-xWx)O7 ceramics: microstructure and microwave dielectric properties, J. Am. Ceram. Soc., 93, 4071 – 4074, (2010).

17 Zhou, D., Pang, L.X., Xie, H.D., et al.: Crystal structure and microwave dielectric properties of an ultralow-temperature-fired (AgBi)0.5WO4 ceramic, Eur. J. Inorg. Chem., 2014, 296 – 301, (2014).

18 Kwon, D.K., Lanagan, M.T., Shrout, T.R.: Microwave dielectric properties of BaO-TeO2 binary compounds, Mater. Lett., 61, 1827 – 1831, (2007).

19 Subodh, G., Ratheesh, R., Jacob, M.V., et al.: Microwave dielectric properties and vibrational spectroscopic analysis of MgTe2O5 ceramics, J. Mater. Res., 23, 1551 – 1556, (2008).

20 Udovic, M., Valant, M., Suvorov, D.: Phase formation and dielectric characterization of the Bi2O3-TeO2 system prepared in an oxygen atmosphere, J. Am. Ceram. Soc., 87, 591 – 597, (2004).

21 Valant, M., Suvorov, D.: Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates, J. Eur. Ceram. Soc., 24, 1715 – 1719, (2004).

22 Wang, S.F., Hsu, Y.F., Wang, Y.R., et al.: Ultra-low-fire Zn2Te3O8-TiTe3O8 ceramic composites, J. Am. Ceram. Soc., 94, 812 – 816, (2011).

23 Subodh, G., Sebastian, M.T.: Glass-free Zn2Te3O8 microwave ceramic for LTCC applications, J. Am. Ceram. Soc., 90, 2266 – 2268, (2007).

24 Chang, L.Y., Sachdev, S.: Alkali tungstates: stability relations in the systems A2O·WO3-WO3, J. Am. Ceram. Soc., 58, 267, (1975).

25 Okada, K., Morikawa, H., Marumo, F.: Sodium tungstate, Acta Crystallogr. Sect., 1974, B30, (1872).

26 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, 443 – 446, (1969).

27 Guo, M., Gong, S.P., Dou, G., et al.: A new temperature stable microwave dielectric ceramics: ZnTiNb2O8 sintered at low temperatures, J. Alloy. Compd., 509, 5988 – 5995, (2011).

28 Wu, Y., Zhou, D., Guo, J., et al.: Temperature stable microwave dielectric ceramic 0.3Li2TiO3-0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss, Mater. Lett., 65, 2680 – 2682, (2011).

29 Penn, S.J., Alford, N., Templeton, A., et al.: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc., 80, 1885 – 1888, (1997).

30 Alford, N.M., Breeze, J., Wang, X., et al.: Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K, J. Eur. Ceram. Soc., 21, 2605 – 2611, (2001).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH