Articles
All articles | Recent articles
Investigation into the Solid-Solution (Na1-xKx)2Mo2O7 Ceramic and the Effect on Sintering Property
X. Yuan1,2, H. Liu1, Y. Wei3, Y. Wang1, Q. Gao1
1 School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China
2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3 School of Foreign Languages, Anyang Institute of Technology, Anyang 455000, China
received May 30, 2022, received in revised form November 24, 2022, accepted November 25, 2022
Vol. 14, No. 1, Pages 11-16 DOI: 10.4416/JCST2022-00006
Abstract
Low-sintering-temperature (Na1-xKx)2Mo2O7 (0.0≤x≤0.2) ceramic was fabricated with the modified solid-phase sintering method. The sintering character and microwave dielectric property of the (Na1-xKx)2Mo2O7 (0.0≤x≤0.2) ceramic were studied systematically. With the modified solid phase sintering method and ion substitution, the mass transfer efficiency of the ceramic powder was improved in the sintering procedure, which decreased the sintering temperature of the Na2Mo2O7 ceramic from 575 °C to 440 °C. Among the components, the (Na0.8K0.2)2Mo2O7 ceramic was sintered well at 440 °C with a permittivity of 10.0, a Q × f value of 48 000 GHz and a temperature coefficient of -75 ppm/K. The modified solid-phase sintering method is a potential substitution for the conventional solid-state method and the ion substitution is an effective way to further lower the sintering temperature.
Download Full Article (PDF)
Keywords
Low sintering temperature, sintering performance, dielectric ceramic
References
1 Sebastian, M.T., Jantunen, H.:, Low-loss dielectric materials for LTCC applications: a review, Int. Mater. Rev., 53, 57 – 90, (2008).
2 Sebastian, M.T., Ubic, R., Jantunen, H.: Low-loss dielectric ceramic materials and their properties, Int. Mater. Rev., 60, 392 – 412, (2015).
3 Sebastian, M.T., Wang, H., Jantunen, H.: Low temperature co-fired ceramics with ultra-low sintering temperature: a review, Curr. Opin. Solid State Mater. Sci., 20, 151 – 170, (2016).
4 Braginsky, V.B., Ilschenko, V.S., Bagdassarov, K.S.: Experimental observation of fundamental microwave absorption in high quality dielectric crystals, Appl. Phys. A., 120, 300 – 305, (1987).
5 Yuan, X.F., Zhang, G.Q., Wang, H.: A novel solid solution (K1-xNax)2Mo2O7 (0.0 ≤ x ≤ 0.3) ceramics with ultralow sintering temperatures, J. Eur. Ceram. Soc., 38, 4967 – 4971, (2018).
6 Valant, M., Suvorov, D.: Processing and dielectric properties of sillenite compounds Bi12MO20-δ (M = Si, Ge, Ti, Pb, Mn, B1/2P1/2), J. Am. Ceram. Soc., 84, 2900 – 2904, (2001).
7 Zhang, P., Liu, J., Zhao, Y.: Effects of MgO-LiF addition on the sintering behavior and microwave dielectric properties of Li2MgTi3O8 ceramics, Mater. Lett., 162, 173 – 175, (2016).
8 Lin, H., Yang, A., Luo, L.: Microwave dielectric properties of low temperature co-fired glass-ceramic based on B2O3-La2O3-MgO glass with La(Mg0.5Ti0.5)O3 ceramics, Mater. Lett., 62, 611 – 614, (2008).
9 Huang, C.L., Yang, W.R.: Effect of CuO addition to Nd(Zn1/2Ti1/2)O3 ceramics on sintering behavior and microwave dielectric properties, Mater. Lett., 63, 103 – 105, (2009).
10 Wang, S.H., Zhou, H.P., Chen, K.X., et al.: Sintering and properties of CaO-Al2O3-B2O3-SiO2 system glass ceramics, Key Eng. Mater., 247, 389 – 392, (2003).
11 Zhang, G.Q., Guo, J., He, L., et al.: Ultra-low sintering temperature microwave dielectric ceramics based on Na2O-MoO3 binary system, J. Am. Ceram. Soc., 98, 528 – 533, (2015).
12 Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348 – 366, (1993).
13 Kim, K.S., Sang, H.S., Kim, S., et al.: Microwave dielectric properties of ceramic/glass composites with bismuth-zinc borosilicate glass. J. Ceram. Process. Res., 11, 47 – 51, (2010).
14 Zhou, D., Rall, C.A., Wang, H., et al.: Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 microwave dielectric ceramics, J. Am. Ceram. Soc., 93, 2147 – 2150, (2010).
15 Zhou, D., Pang, L.X., Guo, J., et al.: Phase evolution, phase transition, Raman spectra, infrared spectra, and microwave dielectric properties of low temperature firing (K0.5xBi1 – 0.5x)(MoxV1-x)O4 ceramics with scheelite related structure, Inorg. Chem., 50, 12733 – 12738, (2011).
16 Wang, S.F., Wang, Y.R., Hsu, Y.F., et al.: Ultra-low-fire Te2(Mo1-xWx)O7 ceramics: microstructure and microwave dielectric properties, J. Am. Ceram. Soc., 93, 4071 – 4074, (2010).
17 Zhou, D., Pang, L.X., Xie, H.D., et al.: Crystal structure and microwave dielectric properties of an ultralow-temperature-fired (AgBi)0.5WO4 ceramic, Eur. J. Inorg. Chem., 2014, 296 – 301, (2014).
18 Kwon, D.K., Lanagan, M.T., Shrout, T.R.: Microwave dielectric properties of BaO-TeO2 binary compounds, Mater. Lett., 61, 1827 – 1831, (2007).
19 Subodh, G., Ratheesh, R., Jacob, M.V., et al.: Microwave dielectric properties and vibrational spectroscopic analysis of MgTe2O5 ceramics, J. Mater. Res., 23, 1551 – 1556, (2008).
20 Udovic, M., Valant, M., Suvorov, D.: Phase formation and dielectric characterization of the Bi2O3-TeO2 system prepared in an oxygen atmosphere, J. Am. Ceram. Soc., 87, 591 – 597, (2004).
21 Valant, M., Suvorov, D.: Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates, J. Eur. Ceram. Soc., 24, 1715 – 1719, (2004).
22 Wang, S.F., Hsu, Y.F., Wang, Y.R., et al.: Ultra-low-fire Zn2Te3O8-TiTe3O8 ceramic composites, J. Am. Ceram. Soc., 94, 812 – 816, (2011).
23 Subodh, G., Sebastian, M.T.: Glass-free Zn2Te3O8 microwave ceramic for LTCC applications, J. Am. Ceram. Soc., 90, 2266 – 2268, (2007).
24 Chang, L.Y., Sachdev, S.: Alkali tungstates: stability relations in the systems A2O·WO3-WO3, J. Am. Ceram. Soc., 58, 267, (1975).
25 Okada, K., Morikawa, H., Marumo, F.: Sodium tungstate, Acta Crystallogr. Sect., 1974, B30, (1872).
26 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, 443 – 446, (1969).
27 Guo, M., Gong, S.P., Dou, G., et al.: A new temperature stable microwave dielectric ceramics: ZnTiNb2O8 sintered at low temperatures, J. Alloy. Compd., 509, 5988 – 5995, (2011).
28 Wu, Y., Zhou, D., Guo, J., et al.: Temperature stable microwave dielectric ceramic 0.3Li2TiO3-0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss, Mater. Lett., 65, 2680 – 2682, (2011).
29 Penn, S.J., Alford, N., Templeton, A., et al.: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc., 80, 1885 – 1888, (1997).
30 Alford, N.M., Breeze, J., Wang, X., et al.: Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K, J. Eur. Ceram. Soc., 21, 2605 – 2611, (2001).
Copyright
Göller Verlag GmbH