• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Characteristics and Sintering Behavior of (Hf-Ta-Ti-Zr-Nb)C High-Entropy Carbides Fabricated by High-Energy Ball Milling and Spark Plasma Sintering

J. Song1, L.V. Duong2, Ph.V. Trinh2, N.N. Linh2, D.D. Phuong2, J. Seok1,3, S.-Y. Kim1,3, J. Han1, H. Kim1

1 Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea
2 Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Viet Nam
3 Department of Materials Science and Engineering, INHA UNIVERSITY, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

received August 30, 2022, received in revised form November 16, 2022, accepted November 17, 2022

Vol. 14, No. 1, Pages 17-24   DOI: 10.4416/JCST2022-00008

Abstract

The present study aimed to analyze the sintering behavior and mechanical properties of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbide powder fabricated using an ultra-high-energy ball mill. The fabricated powder was sintered by means of spark plasma sintering (SPS) at a constant pressure of 50 MPa and for ten minutes with varying sintering temperature between 1 700, 1 800, and 1 900 °C. Changes in the microstructure and mechanical properties of the powder and sintered carbides were examined. The high-entropy carbide powder obtained after 60 minutes of ball milling was found to be an assembly of uniformly distributed particles with a size of hundreds of nanometers. It was also found that the degree of X-ray line broadening increased with increasing milling time. When the milling time was relatively long, that is 60 minutes, the elements that initially existed in the form of multi-carbides tended to merge as part of a single FCC phase. In addition, an increase in the temperature of the spark plasma sintering process was found to help to improve the sintering density and hardness. This result confirmed that the temperature change was one of the most important process parameters that determined the degree of densification of sintered high-entropy carbides.

Download Full Article (PDF)

Keywords

High-entropy carbide, ultra-high-energy ball milling, spark plasma sintering

References

1 Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P.: Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 61, 1 – 93, (2014).

2 Yeh, J.-W.: Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 65, 1759 – 1771, (2013).

3 Yeh, J-W, Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., Chang, S-Y.: Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 6, 299 – 303, (2004).

4 Chuang, M.-H., Tsai, M.-H., Wang, W.-R., Lin, S.-J., Yeh, J.-W.: Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys, Acta Mater., 59, 6308 – 6317, (2011).

5 Ye, Y.F., Wang, Q., Lu, J., Liu, C. T., Yang, Y.: High-Entropy Alloy: Challenges and Prospects, Mater. Today., 19, 349 – 362, (2016).

6 Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., Liaw, P.K.: Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 10, 534 – 538, (2008)

7 Wei, X.-F., Qin, Y., Liu, J.-X., Li, F., Liang, Y.-C., Zhang, G.-J.: Gradient Microstructure Development and Grain Growth Inhibition in High-Entropy Carbide Ceramics Prepared by Reactive Spark Plasma Sintering, J. Eur. Ceram. Soc., 40, 935 – 941, (2020).

8 Feng, L., Fahrenholtz, W.G., Hilmas, G.E., Zhou, Y.: Synthesis of Single-Phase High-Entropy Carbide Powders, Scr. Mater., 162, 90 – 93, (2019).

9 Zhou, J., Zhang, J., Zhang, F., Niu, B., Lei, L., Wang, W.: High-Entropy Carbide: A Novel Class of Multicomponent Ceramics, Ceram. Int., 44, 22014 – 22018, (2018).

10 Yang, Y., Wang, W., Gan, G.-Y., Shi, X.-F., Tang, B.-Y.: Structural, Mechanical and Electronic Properties of (TaNbHfTiZr)C High Entropy Carbide under Pressure: Ab Initio Investigation, Physica B., 550, 163 – 170, (2018).

11 Pötschke, J., Dahal, M., Herrmann, M., Vornberger, A., Matthey, B., Michaelis, A.: Preparation of High-Entropy Carbides by Different Sintering Techniques, J. Mater. Sci., 56, 11237 – 11247, (2021).

12 Charles, R.J.: Energy-Size Reduction Relationships in Comminution, Trans. AIME., 9, 80 – 88, (1957).

13 Gao, M., Forssberg, E.: Prediction of Product Size Distributions for a Stirred Ball Mill, Powder Technol., 84, 101 – 106, (1995).

14 German, R.M.: Powder Metallurgy and Particulate Materials Processing: The Processes, Materials, Products, Properties and Applications. Metal Powder Industries Federation, 2005.

15 Song, J., Han, J., Kim, S.-Y., Seok, J., Kim, H.: Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process, J. Powder Mater., 29, 34 – 40, (2022).

16 Buravleva, A.A., Fedorets, A.N., Vornovskikh, A.A., Ognev, A.V., Nepomnyushchaya, V.A., Sakhnevich, V.N., Lembikov, A.O., Kornakova, Z.E., Kapustina, O.V., Tarabanova, A.E., Reva, V.P., Buravlev, I.Y.: Spark Plasma Sintering of WC-Based 10 wt%Co Hard Alloy: A Study of Sintering Kinetics and Solid-Phase Processes, Mater., 15, (2022).

17 Rumman, M.R., Xie, Z., Hong, S.-J., Ghomashchi, R.: Effect of Spark Plasma Sintering Pressure on Mechanical Properties of WC-7.5 wt% Nano Co, Mater. Des., 68, 221 – 227, (2015).

18 Oses, C., Toher, C., Curtarolo, S.: High-Entropy Ceramics, Nat. Rev. Mater., 5, 295 – 309, (2020).

19 Navrotsky, A., Kleppa, O.J.: The Thermodynamics of Cation Distributions in Simple Spinels, J. Inorg. Nucl. Chem., 29, 2701 – 2714, (1967).

20 Navrotsky, A., Kleppa, O.J.: Thermodynamics of Formation of Simple Spinels, J. Inorg. Nucl. Chem., 30, 479 – 498, (1968).

21 Moskovskikh, D.O., Vorotilo, S., Sedegov, A.S., Kuskov, K.V., Bardasova, K.V., Kiryukhantsev-Korneev, P.V., Zhukovskyi, M., Mukasyan, A.S.: High-Entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C Carbides Fabricated through Reactive High-Energy Ball Milling and Spark Plasma Sintering, Ceram. Int., 46, 19008 – 19014, (2020).

22 Li, W., Olevsky, E.A., McKittrick, J., Maximenko, A.L., German, R.M.: Densification Mechanisms of Spark Plasma Sintering: Multi-Step Pressure Dilatometry, J. Mater. Sci., 47, 7036 – 7046, (2012).

23 Liu, D., Zhang, A., Jia, J., Meng, J., Su, B.: Phase Evolution and Properties of (VNbTaMoW)C High Entropy Carbide Prepared by Reaction Synthesis, J. Eur. Ceram. Soc., 40, 2746 – 2751, (2020).

24 Taneja, K., Kumar, M., Mahajan, S.B.: Reaction Mechanism for Pressureless Sintering Silicon Carbide Boron Carbide Composite, Mater. Today: Proceedings., 39, 1921 – 1924, (2021).

25 Aygüzer Y.Z., DeLucca, V.A., Haber, R.A.: Effect of Boron Carbide Additive and Sintering Temperature - Dwelling Time on Silicon Carbide Properties, Ceram. Int., 47, 7177 – 7182, (2021).

26 Wei, X.-F., Qin, Y., Liu, J.-X., Li, F., Liang, Y.-C., Zhang, G.-J.: Gradient Microstructure Development and Grain Growth Inhibition in High-Entropy Carbide Ceramics Prepared by Reactive Spark Plasma Sintering, J. Eur. Ceram. Soc., 40, 935 – 941, (2020).

27 Zhang, Z., Fu, S., Aversano, F., Bortolotti, M., Zhang, H., Hu, C., Grasso, S.: Arc Melting: A Novel Method to Prepare Homogeneous Solid Solutions of Transition Metal Carbides (Zr, Ta, Hf), Ceram. Int., 45, 9316 – 9319, (2019).

28 Ghaffari, S.A., Faghihi-Sani, M.A., Golestani-Fard, F., Nojabayy, M.: Diffusion and Solid Solution Formation between the Binary Carbides of TaC, HfC and ZrC, Int. J. Refract. Met. Hard Mater., 41, 180 – 184, (2013).

29 Tsai, K.-M., Hsieh, C.-Y., Lu, H.-H.: Sintering of Binderless Tungsten Carbide, Ceram. Int., 36, 689 – 692, (2010).

30 Sun, K., Yang, Z., Mu, R., Niu, S., Wang, Y., Wang, D.: Densification and Joining of a (HfTaZrNbTi)C High-Entropy Ceramic by Hot Pressing, J. Eur. Ceram. Soc., 41, 3196 – 3206, (2021).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH