Articles
All articles | Recent articles
Characteristics and Sintering Behavior of (Hf-Ta-Ti-Zr-Nb)C High-Entropy Carbides Fabricated by High-Energy Ball Milling and Spark Plasma Sintering
J. Song1, L.V. Duong2, Ph.V. Trinh2, N.N. Linh2, D.D. Phuong2, J. Seok1,3, S.-Y. Kim1,3, J. Han1, H. Kim1
1 Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea
2 Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Viet Nam
3 Department of Materials Science and Engineering, INHA UNIVERSITY, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
received August 30, 2022, received in revised form November 16, 2022, accepted November 17, 2022
Vol. 14, No. 1, Pages 17-24 DOI: 10.4416/JCST2022-00008
Abstract
The present study aimed to analyze the sintering behavior and mechanical properties of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbide powder fabricated using an ultra-high-energy ball mill. The fabricated powder was sintered by means of spark plasma sintering (SPS) at a constant pressure of 50 MPa and for ten minutes with varying sintering temperature between 1 700, 1 800, and 1 900 °C. Changes in the microstructure and mechanical properties of the powder and sintered carbides were examined. The high-entropy carbide powder obtained after 60 minutes of ball milling was found to be an assembly of uniformly distributed particles with a size of hundreds of nanometers. It was also found that the degree of X-ray line broadening increased with increasing milling time. When the milling time was relatively long, that is 60 minutes, the elements that initially existed in the form of multi-carbides tended to merge as part of a single FCC phase. In addition, an increase in the temperature of the spark plasma sintering process was found to help to improve the sintering density and hardness. This result confirmed that the temperature change was one of the most important process parameters that determined the degree of densification of sintered high-entropy carbides.
Download Full Article (PDF)
Keywords
High-entropy carbide, ultra-high-energy ball milling, spark plasma sintering
References
1 Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P.: Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 61, 1 – 93, (2014).
2 Yeh, J.-W.: Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 65, 1759 – 1771, (2013).
3 Yeh, J-W, Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., Chang, S-Y.: Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 6, 299 – 303, (2004).
4 Chuang, M.-H., Tsai, M.-H., Wang, W.-R., Lin, S.-J., Yeh, J.-W.: Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys, Acta Mater., 59, 6308 – 6317, (2011).
5 Ye, Y.F., Wang, Q., Lu, J., Liu, C. T., Yang, Y.: High-Entropy Alloy: Challenges and Prospects, Mater. Today., 19, 349 – 362, (2016).
6 Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., Liaw, P.K.: Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 10, 534 – 538, (2008)
7 Wei, X.-F., Qin, Y., Liu, J.-X., Li, F., Liang, Y.-C., Zhang, G.-J.: Gradient Microstructure Development and Grain Growth Inhibition in High-Entropy Carbide Ceramics Prepared by Reactive Spark Plasma Sintering, J. Eur. Ceram. Soc., 40, 935 – 941, (2020).
8 Feng, L., Fahrenholtz, W.G., Hilmas, G.E., Zhou, Y.: Synthesis of Single-Phase High-Entropy Carbide Powders, Scr. Mater., 162, 90 – 93, (2019).
9 Zhou, J., Zhang, J., Zhang, F., Niu, B., Lei, L., Wang, W.: High-Entropy Carbide: A Novel Class of Multicomponent Ceramics, Ceram. Int., 44, 22014 – 22018, (2018).
10 Yang, Y., Wang, W., Gan, G.-Y., Shi, X.-F., Tang, B.-Y.: Structural, Mechanical and Electronic Properties of (TaNbHfTiZr)C High Entropy Carbide under Pressure: Ab Initio Investigation, Physica B., 550, 163 – 170, (2018).
11 Pötschke, J., Dahal, M., Herrmann, M., Vornberger, A., Matthey, B., Michaelis, A.: Preparation of High-Entropy Carbides by Different Sintering Techniques, J. Mater. Sci., 56, 11237 – 11247, (2021).
12 Charles, R.J.: Energy-Size Reduction Relationships in Comminution, Trans. AIME., 9, 80 – 88, (1957).
13 Gao, M., Forssberg, E.: Prediction of Product Size Distributions for a Stirred Ball Mill, Powder Technol., 84, 101 – 106, (1995).
14 German, R.M.: Powder Metallurgy and Particulate Materials Processing: The Processes, Materials, Products, Properties and Applications. Metal Powder Industries Federation, 2005.
15 Song, J., Han, J., Kim, S.-Y., Seok, J., Kim, H.: Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process, J. Powder Mater., 29, 34 – 40, (2022).
16 Buravleva, A.A., Fedorets, A.N., Vornovskikh, A.A., Ognev, A.V., Nepomnyushchaya, V.A., Sakhnevich, V.N., Lembikov, A.O., Kornakova, Z.E., Kapustina, O.V., Tarabanova, A.E., Reva, V.P., Buravlev, I.Y.: Spark Plasma Sintering of WC-Based 10 wt%Co Hard Alloy: A Study of Sintering Kinetics and Solid-Phase Processes, Mater., 15, (2022).
17 Rumman, M.R., Xie, Z., Hong, S.-J., Ghomashchi, R.: Effect of Spark Plasma Sintering Pressure on Mechanical Properties of WC-7.5 wt% Nano Co, Mater. Des., 68, 221 – 227, (2015).
18 Oses, C., Toher, C., Curtarolo, S.: High-Entropy Ceramics, Nat. Rev. Mater., 5, 295 – 309, (2020).
19 Navrotsky, A., Kleppa, O.J.: The Thermodynamics of Cation Distributions in Simple Spinels, J. Inorg. Nucl. Chem., 29, 2701 – 2714, (1967).
20 Navrotsky, A., Kleppa, O.J.: Thermodynamics of Formation of Simple Spinels, J. Inorg. Nucl. Chem., 30, 479 – 498, (1968).
21 Moskovskikh, D.O., Vorotilo, S., Sedegov, A.S., Kuskov, K.V., Bardasova, K.V., Kiryukhantsev-Korneev, P.V., Zhukovskyi, M., Mukasyan, A.S.: High-Entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C Carbides Fabricated through Reactive High-Energy Ball Milling and Spark Plasma Sintering, Ceram. Int., 46, 19008 – 19014, (2020).
22 Li, W., Olevsky, E.A., McKittrick, J., Maximenko, A.L., German, R.M.: Densification Mechanisms of Spark Plasma Sintering: Multi-Step Pressure Dilatometry, J. Mater. Sci., 47, 7036 – 7046, (2012).
23 Liu, D., Zhang, A., Jia, J., Meng, J., Su, B.: Phase Evolution and Properties of (VNbTaMoW)C High Entropy Carbide Prepared by Reaction Synthesis, J. Eur. Ceram. Soc., 40, 2746 – 2751, (2020).
24 Taneja, K., Kumar, M., Mahajan, S.B.: Reaction Mechanism for Pressureless Sintering Silicon Carbide Boron Carbide Composite, Mater. Today: Proceedings., 39, 1921 – 1924, (2021).
25 Aygüzer Y.Z., DeLucca, V.A., Haber, R.A.: Effect of Boron Carbide Additive and Sintering Temperature - Dwelling Time on Silicon Carbide Properties, Ceram. Int., 47, 7177 – 7182, (2021).
26 Wei, X.-F., Qin, Y., Liu, J.-X., Li, F., Liang, Y.-C., Zhang, G.-J.: Gradient Microstructure Development and Grain Growth Inhibition in High-Entropy Carbide Ceramics Prepared by Reactive Spark Plasma Sintering, J. Eur. Ceram. Soc., 40, 935 – 941, (2020).
27 Zhang, Z., Fu, S., Aversano, F., Bortolotti, M., Zhang, H., Hu, C., Grasso, S.: Arc Melting: A Novel Method to Prepare Homogeneous Solid Solutions of Transition Metal Carbides (Zr, Ta, Hf), Ceram. Int., 45, 9316 – 9319, (2019).
28 Ghaffari, S.A., Faghihi-Sani, M.A., Golestani-Fard, F., Nojabayy, M.: Diffusion and Solid Solution Formation between the Binary Carbides of TaC, HfC and ZrC, Int. J. Refract. Met. Hard Mater., 41, 180 – 184, (2013).
29 Tsai, K.-M., Hsieh, C.-Y., Lu, H.-H.: Sintering of Binderless Tungsten Carbide, Ceram. Int., 36, 689 – 692, (2010).
30 Sun, K., Yang, Z., Mu, R., Niu, S., Wang, Y., Wang, D.: Densification and Joining of a (HfTaZrNbTi)C High-Entropy Ceramic by Hot Pressing, J. Eur. Ceram. Soc., 41, 3196 – 3206, (2021).
Copyright
Göller Verlag GmbH