• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Enhancement of Piezoelectric Properties in Lanthanum-Modified Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics via Spontaneous Relaxor-to-Ferroelectric Transition

Y. Wang, C. Chen, S. Qian, X. Zhang

State Grid Smart Grid Research Institute Co., Ltd., Beijing, China, 102209

received September 20, 2022, received in revised form October 23, 2022, accepted October 25, 2022

Vol. 13, No. 2, Pages 121-126   DOI: 10.4416/JCST2022-00009

Abstract

In relaxor ferroelectrics, spontaneous relaxor-to-ferroelectric transition has attracted much attention due to its unique performance. However, despite extensive studies over several decades, the effect of spontaneous relaxor-to-ferroelectric transition on the piezoelectric, dielectric and ferroelectric properties of relaxor ferroelectrics remains obscure. In this work, the piezoelectric, dielectric and ferroelectric properties of 12 % La-modified Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics, which exhibit spontaneous relaxor-to-ferroelectric transition with a wide composition range (0.44 ≤ x ≤ 0.51), were systematically investigated. It has been found that the spontaneous transition composition with x = 0.48 shows enhanced piezoelectric, dielectric and ferroelectric properties compared to the adjacent compositions. The x = 0.48 composition has a piezoelectric coefficient d33 of 235 pC/N, accompanied by a high relative permittivity (up to 12230) and a high maximum polarization (up to 20.4 μC/cm2). This enhancement effect originates from the easy polarization rotation induced by its instability state and the coexistence of micro-sized domain and polar nanodomain configuration. Our work may provide new insights into the exploration of the mechanism that enhances the piezoelectric, dielectric, and ferroelectric properties of relaxor ferroelectric materials.

Download Full Article (PDF)

Keywords

Relaxor ferroelectric, spontaneous transition, piezoelectric property, dielectric property, ferroelectric property

References

1 Uchino, K.: Ferroelectric devices, second edition, (2009).

2 Li, F., Lin, D., Chen, Z., Cheng, Z., Wang, J., Li, C., Xu, Z., Huang, Q., Liao, X., Chen, L.Q., Shrout, T.R., Zhang, S.: Ultrahigh piezoelectricity in ferroelectric ceramics by design, Nat. Mater., 17, [4], 349 – 354, (2018). DOI: 10.1038/s41563 – 018 – 0034 – 4.

3 Haertling, G.H.: Ferroelectric Ceramics: History and technology, J. Am. Ceram. Soc., 82, [4], 797 – 818, (1999).

4 Yang, Y., Zhou, Z., Xin, L., Zhou, C., Zhang, L., Xiao, A., Ren, X.: Large electrostrain from the ferroelectric aging effect around a morphotropic phase boundary, J. Phys. Chem. C, 123, [6], 3321 – 3325, (2019). DOI: 10.1021/acs.jpcc.8b10764.

5 Yang, Y., Zhou, Z., Ke, X., Wang, Y., Su, X., Li, J., Bai, Y., Ren, X.: The electrocaloric effect in intrinsic-acceptor-doped Ba(Ti,Ce)O3-(Ba,Ca)TiO3 ceramics, Scripta Mater., 174, 44 – 48, (2020). DOI: 10.1016/j.scriptamat.2019.08.026.

6 Bokov, A.A., Ye, Z.G.: Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci., 41, [1], 31 – 52, (2006). DOI: 10.1007/s10853 – 005 – 5915 – 7.

7 Uchino, K. Relaxor ferroelectric-based ceramics. In Advanced Piezoelectric Materials, 127 – 153, (2017).

8 Kleemann, W.: Random fields in relaxor ferroelectrics – a jubilee review, J. Adv. Dielectrics, 02, [02], 1241001, (2012). DOI: 10.1142/s2010135x12410019.

9 Shvartsman, V.V., Lupascu, D.C., Green, D.J.: Lead-free relaxor ferroelectrics, J. Am. Ceram. Soc., 95, [1], 1 – 26, (2012). DOI: 10.1111/j.1551 – 2916.2011.04952.x.

10 Yang, Y., Ji, Y., Fang, M., Zhou, Z., Zhang, L., Ren, X.: Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivity, Phys. Rev. Lett., 123, [13], 137601, (2019). DOI: 10.1103/PhysRevLett.123.137601.

11 Yang, Y., Liu, C., Ji, Y., He, L., Ren, X.: Designed morphotropic relaxor boundary ceramic exhibiting large electrostrain and negligible hysteresis, Acta Mater., 208, 116720, (2021). DOI: 10.1016/j.actamat.2021.116720.

12 Zhang, S., Li, F., Jiang, X., Kim, J., Luo, J., Geng, X.: Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – a review, Prog. Mater. Sci., 68, 1 – 66, (2015). DOI: 10.1016/j.pmatsci.2014.10.002.

13 Kleemann, W., Miga, S., Dec, J., Zhai, J.: Crossover from ferroelectric to relaxor and cluster glass in BaTi1-xZrxO3 (x=0.25 – 0.35) studied by non-linear permittivity, Appl. Phys. Lett., 102, [23], 232907, (2013). DOI: 10.1063/1.4811089.

14 Kleemann, W., Miga, S., Xu, Z. K., Lu, S. G., Dec, J.: Non-linear permittivity study of the crossover from ferroelectric to relaxor and cluster glass in BaTi1-xSnxO3 (x = 0.175 – 0.30), Appl. Phys. Lett., 104, [18], 182910, (2014). DOI: 10.1063/1.4875595.

15 Yang, Y., Xiao, A., Zhao, J., Ren, X.: Ferroelectric-relaxor boundary in La-modified Pb(Mg1/3Nb2/3)O3-xPbTiO3 crossover showing enhanced dielectric and piezoelectric properties, Scripta Mater., 203, 114042, (2021). DOI: 10.1016/j.scriptamat.2021.114042.

16 Liu, Y., Xu, Z., Liu, L., Li, F.: Morphotropic phase boundary-like properties in a ferroelectric-paraelectric nanocomposite, J. Appl. Phys., 126, [12], 124102, (2019). DOI: 10.1063/1.5113623.

17 Kutnjak, Z., Blinc, R., Ishibashi, Y.: Electric field induced critical points and polarization rotations in relaxor ferroelectrics, Phys. Rev. B, 76, [10], 104102, (2007). DOI: 10.1103/PhysRevB.76.104102.

18 Deng, G., Li, G., Ding, A., Yin, Q.: Evidence for oxygen vacancy inducing spontaneous normal-relaxor transition in complex perovskite ferroelectrics, Appl. Phys. Lett., 87, [19], 192905, (2005). DOI: 10.1063/1.2125110.

19 Hagiwara, M., Fujihara, S.: Grain-size-dependent spontaneous relaxor-to-ferroelectric phase transition in (Bi1/2K1/2)TiO3 ceramics, Appl. Phys. Lett., 107, [1], 012903, (2015). DOI: 10.1063/1.4926496.

20 Kim, T.-Y., Jang, H.M.: B-site vacancy as the origin of spontaneous normal-to-relaxor ferroelectric transitions in La-modified PbTiO3, Appl. Phys. Lett., 77, [23], 3824 – 3826, (2000). DOI: 10.1063/1.1330218.

21 Chu, F., Setter, N., Tagantsev, A.K.: The spontaneous relaxor-ferroelectric transition of Pb(Sc0.5Ta0.5)O3, J. Appl. Phys., 74, [8], 5129 – 5134, (1993). DOI: 10.1063/1.354300.

22 Chu, F., Reaney, I.M., Setter, N.: Spontaneous (zero-field) relaxor-to-ferroelectric-phase transition in disordered Pb(Sc1/2Nb1/2)O3, J. Appl. Phys., 77, [4], 1671 – 1676, (1995). DOI: 10.1063/1.358856.

23 Craciun, F., Galassi, C., Birjega, R.: Electric-field-induced and spontaneous relaxor-ferroelectric phase transitions in (Na1/2Bi1/2)1-xBaxTiO3, J. Appl. Phys., 112, [12], 124106, (2012). DOI: 10.1063/1.4770326.

24 Cao, H., Li, J., Viehland, D.: Structural origin of the relaxor-to-normal ferroelectric transition in Pb(Mg1/3Nb2/3O3)-xPbTiO3, J. Appl. Phys., 100, [3], 034110, (2006). DOI: 10.1063/1.2219164.

25 Bidault, O., Husson, E., Morell, A.: Effects of lead vacancies on the spontaneous relaxor to ferroelectric phase transition in Pb[(Mg1/3Nb2/3)0.9Ti0.1]O3, J. Appl. Phys., 82, [11], 5674 – 5679, (1997). DOI: 10.1063/1.366430.

26 Noblanc, O., Gaucher, P., Calvarin, G.: Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric solid solutions around the morphotropic boundary, J. Appl. Phys., 79, [8], 4291, (1996). DOI: 10.1063/1.361865.

27 Nahas, Y., Prokhorenko, S., Kornev, I., Bellaiche, L.: Topological point defects in relaxor ferroelectrics, Phys. Rev. Lett., 116, [12], 127601, (2016). DOI: 10.1103/PhysRevLett.116.127601.

28 Ye, Z.G.: Relaxor ferroelectric complex perovskites: structure, properties and phase transitions, Key Engineering Mater., 155 – 156, 81 – 122, (1998). DOI: 10.4028/www.scientific.net/KEM.155 – 156.81.

29 Vakhrushev, S.B., Shapiro, S.M.: Direct evidence of soft mode behavior near the Burns temperature in the PbMg1/3Nb2/3O3 relaxor ferroelectric, Phys. Rev. B, 66, [21], 214101, (2002). DOI: 10.1103/PhysRevB.66.214101.

30 Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M.: Deviation from Curie-Weiss behavior in relaxor ferroelectrics, Phys. Rev. B, 46, [13], 8003 – 8006, (1992). DOI: 10.1103/physrevb.46.8003.

31 Surya M.G., Jie-Fang L., Viehland, D.: Coexistence of relaxor and normal ferroelectric phases in morphotropic phase boundary compositions of lanthanum-modified lead zirconate titanate, J. Am. Ceram. Soc., 81, [3], 557 – 64, (1998)

32 Hagiwara, M., Ehara, Y., Novak, N., Khansur, N.H., Ayrikyan, A., Webber, K.G., Fujihara, S.: Relaxor-ferroelectric crossover in (Bi1/2K1/2)TiO3: Origin of the spontaneous phase transition and the effect of an applied external field, Phys. Rev. B, 96, 014103, (2017). DOI: 10.1103/PhysRevB.96.014103.

33 He, H., Lu, W., Oh, J.A.S., Li, Z., Lu, X., Zeng, K., Lu, L.: Probing the coexistence of ferroelectric and relaxor states in Bi0.5Na0.5TiO3-based ceramics for enhanced piezoelectric performance, ACS Appl. Mater. Interfaces, 12, [27], 30548 – 30556, (2020). DOI: 10.1021/acsami.0c06666.

34 Bobnar, V., Kutnjak, Z., Pirc, R., Blinc, R., Levstik, A.: Crossover from glassy to inhomogeneous-ferroelectric nonlinear dielectric response in relaxor ferroelectrics, Phys. Rev. Lett., 84, [25], 5892 – 5895, (2000). DOI: 10.1103/PhysRevLett.84.5892.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH