• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Powder Modification Technology and Preparation of MgAl2O4 Transparent Ceramics by Hot Pressing

L. Guo1, Y. Zhao1, S. Xu2, H. Shi1, A. Zheng1, Y. Ma1

1 GRINM Guojing Advanced Materials Co., Ltd., General Research Institute for Nonferrous Metals, Langfang 065001, PR China.
2 Zhengzhou University, Zhengzhou 450000, PR China.

received June 12, 2022, received in revised form September 5, 2022, accepted October 17, 2022

Vol. 13, No. 2, Pages 113-120   DOI: 10.4416/JCST2022-00007

Abstract

Hot-pressed MgAl2O4 transparent ceramics were successfully prepared based on powder modification technology using commercial MgAl2O4 powder. With a 2-wt% polyvinyl alcohol (PVA) addition and the powder modification treatment, the average particle size of the powder is 70 – 150 nm, the specific surface area is 32.16 m2/g, and the median diameter (D (50)) is 7.2730 μm. Concluding the research about the effect of LiF on the properties of hot-pressed MgAl2O4 ceramics prepared based on powder modification technology, hot-press sintering proceeded well with a doping of 2 wt% PVA and 1 wt% LiF, and the mean maximum transmittance within the wave length range of 400 – 800 nm and 3 – 5 μm is 73.48 % and 83.09 % respectively, and the average grain size is 20 – 40 μm. XRD (X-ray diffraction) and ICP (Inductively Coupled Plasma) analysis of hot-pressed MgAl2O4 transparent ceramics indicate that the Li elements in hot-pressed transparent ceramics did not escape completely, but may exist as LiAlO2.

Download Full Article (PDF)

Keywords

Powder modification technology, powder characterization, MgAl2O4 transparent ceramics, optical properties, hot pressing

References

1 Huaizhi, Y.: Infrared optical materials, Second Edition [M] Beijing: National Defense Industry Press, 72 – 73, (2015).

2 Shi, Z., Zhao, Q., Guo, B., et al.: A review on processing polycrystalline magnesium aluminate spinel (MgAl2O4): Sintering techniques, material properties and machinability, Mater. Design, 193:108858(2020). doi: https://doi.org/10.1016/j.matdes.2020.108858.

3 Harris, D.C.: History of development of polycrystalline optical spinel in the U.S., Proc. SPIE – Int. Soc. Opt. Eng., 1 – 22, (2005). doi: https://doi.org/10.1117/12.609708.

4 Sepulveda, J.L., Loutfy, R.O., Ibrahim, S., et al.: Large-size spinel windows and domes[C]//Window & Dome Technologies & Materials XIII, Int. Soc. Opt. Photon., 2013. doi: https://doi.org/10.1117/12.2016442.

5 Mroz, T.J., Hartnett, T.M., Wahl, J.M., et al.: Recent advances in spinel optical ceramic, Proc Spie, 5786, (2005). doi: https://doi.org/10.1117/12.607593.

6 Gilde, G., Patel, P., Sands, J., Patterson, P., et al.: Evaluation of hot isostatic pressing parameters on the optical and ballistic properties of spinel for transparent armor, J. Am. Ceram. Soc., 88, [10], 2747 – 51, (2006).

7 Rubat du Merac, M., Kleebe, H.J., Müller, M.M., Reimanis, I.E.: Fifty years of research and development coming to fruition; Unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel, J. Am. Ceram. Soc., 96, 3341 – 3365, (2013). doi: https://doi.org/10.1111/jace.12637.

8 Baudin, C., Pena, P.: Influence of stoichiometry on fracture behavior of magnesium aluminate spinels at 1 200 °C, J. Eur. Ceram. Soc., 17, 1501 – 11 (1997).

9 Jiang, L.P., Jiang, X. et al.: Multiobjective machine learning-assisted discovery of a novel cyan-green garnet: Ce phosphors with excellent thermal stability, ACS Appl. Mater. Inter., 14, [13], 15426 – 15436, (2022). doi: https://doi.org/10.1021/acsami.2c02698.

10 Bratton, R.J.: Translucent sintered MgAl2O4, J. Am. Ceram. Soc., 57, [7], 283 – 6, (1974). doi: https://doi.org/10.1111/j.1151 – 2916.1974.tb10901.x.

11 Hing, P.: Fabrication of Translucent Magnesium aluminate spinel and its compatibility in sodium vapour, J. Mater. Sci., 11, 1919 – 26, (1976). doi: https://doi.org/10.1007/BF00708270.

12 Benameur, N., Bernard-Granger, G., et al.: Sintering analysis of a fine-grained alumina-magnesia spinel powder, J. Am. Ceram. Soc., 94, [5], 1388 – 96 (2011). doi: https://doi.org/10.1111/j.1551 – 2916.2010.04271.x.

13 Morita, K., Kim, B.-N., Hiraga, K., Yoshida, H.: Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering process, Scripta Mater., 58, 1114 – 7, (2008). doi: https://doi.org/10.1016/j.scriptamat.2008.02.008

14 Meir, S., Kalabukhov, S., et al.: Synthesis and densification of transparent magnesium aluminate spinel by sps processing, J. Am. Ceram. Soc., 2, 358 – 64, (2009). doi: https://doi.org/10.1111/j.1551 – 2916.2008.02893.x

15 Bonnefont, G., Fantozzi, G., et al.: Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders, Ceram. Int., 38, 131 – 41, (2012). doi: https://doi.org/10.1016/j.ceramint.2011.06.045.

16 Liu, G., Li, J., Yang, Z.: Melt-casting of translucent MgAl2O4 ceramics by combustion synthesis under high gravity, Mater. Manuf. Process., 27, [6], 689 – 93, (2012). doi: https://doi.org/10.1080/10426914.2011.593250.

17 Mazzoni, A.D., Sainz, M.A., et al.: Formation and sintering of spinels (MgAl2O4) in reducing atmospheres, Mater. Chem. Phys., 78, 30 – 7, (2002). doi: https://doi.org/10.1016/S0254 – 0584(02)00333 – 4.

18 Esposito, L., et al.: Production and characterization of transparent MgAl2O4 prepared by hot pressing, J. Eur. Ceram. Soc., 33, 737 – 47, (2013). doi: https://doi.org/10.1016/j.jeurceramsoc.2012.10.013.

19 Lei, M-Y., Huang, C.-X., Sun, J.-L.: Effect of HIP on the properties and microstructure of transparent polycrystalline spinel, Key Eng. Mat., 336 – 338, 1200 – 2 (2007).

20 Villalobos, G.R., Sanghera, J.S., Aggarwal, I.D.: Degradation of magnesium aluminum spinel by lithium fluoride sintering aid, J. Am. Ceram. Soc., 88, [5], 1321 – 1322, (2010). doi: https://doi.org/10.1111/j.1551 – 2916.2005.00209.x.

21 Liu, Q., Jing, Y., Su, S., et al.: Microstructure and properties of MgAl2O4 transparent ceramics fabricated by hot isostatic pressing, Opt. Mater., 104, (2020). doi: https://doi.org/10.1016/j.optmat.2020.109938

22 Alhaji, A., Taherian, M.H., Ghorbani, S., et al.: Development of synthesis and granulation process of MgAl2O4 powder for the fabrication of transparent ceramic, Opt. Mater., 98:109440(2019). doi: https://doi.org/10.1016/j.optmat.2019.109440.

23 Zhou, Y., Ye, D., Wu, Y. et al.: Low-cost preparation and characterization of MgAl2O4 ceramics, Ceram. Int., 48, [5], 7316 – 7319, (2022). doi: https://doi.org/10.1016/j.ceramint.2021.11.196.

24 Fa Hui, L.I., Lin, H., Junfeng L.I., et al.: Influence of LiF on the infrared transmissivity of magnesia alumina spinel transparent ceramics, J. Inorg. Mater., 27, [4] 417 – 421, (2012). doi: https://doi.org/10.3724/SP.J.1077.2012.00417

25 Rozenburg, K., Reimanis, I.E., Kleebe, H.J., et al.: Chemical interaction between LiF and MgAl2O4 spinel during sintering, J. Am. Ceram. Soc., 90, [7], 2038 – 2042, (2007). doi: https://doi.org/10.1111/j.1551 – 2916.2007.01723.x

26 Sutorik, A.C., Gilde, G., Cooper, C., Wright, J., Hilton, C.: The effect of varied amounts of lif sintering aid on the transparency of alumina rich spinel ceramic with the composition MgO-1.5Al2O3, J. Am. Ceram. Soc., 95, [6], 1807 – 10, (2012). doi: https://doi.org/10.1111/j.1551 – 2916.2012.05217.x

27 Belov, S.F., Adaeva, T.I., Rozdin, I.A., Varfolomeev, M.B.: Reaction of Al2O3 with LiF, Refractories, 26, 1675 – 6, (1985).

28 Li, X.Y., Liu, Q., Hu, Z.W., Jiang, N., Shi, Y., Li, J.: Influence of ammonium hydrogen carbonate to metal ions molar ratio on co-precipitated nanopowders for TGG transparent ceramics, J. Inorg. Mater., 34, 791 – 796, (2019). doi: https://doi.org/10.15541/jim20180574.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH