• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Improved Flexural Strength in Digital-Light-Processing-Printed Si3N4 Ceramics by Removing Carbon Residue

B. Jin1, Y. Bian1, Y. Shen1, B. Xing1, M. Li2, Z. Zhao1

1 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
2 Jiaxing CeramPlus Technology Co., Ltd., Jiaxing, 314100, China

received January 7, 2022, received in revised form April 28, 2022, accepted May 5, 2022

Vol. 13, No. 2, Pages 99-106   DOI: 10.4416/JCST2022-00001

Abstract

The debinding step is vitally important to obtain defect-free ceramics in the fabrication of ceramics by means of DLP-3D printing. However, the residual carbon from the decomposition of the organic matter during the debinding process severely affects the quality and mechanical properties of the sintered ceramics. In this work, it has been proven that the carbon residue can participate in a carbothermal reduction reaction at 1 300 °C and lead to the formation of macroscopic defects such as delamination and cracks that occurred in the surface of the sintered silicon nitride ceramics. Based on this, we propose an approach to eliminate the carbon retained in silicon nitride compacts fabricated with the stereolithography technique. The amount of carbon residue that remained in the debinded silicon nitride bodies is 0.58 % based on thermogravimetric analysis in air atmosphere. When the oxidation temperature and holding time in the air were 450 °C and 5 h, respectively, the residual carbon in the samples could be sufficiently removed. The flexural strength of sintered ceramics without the removal of carbon residue is only 184.88 ± 8.16 MPa; sintered silicon nitride ceramics after removal of residual carbon can reach 469.78 ± 11.86 MPa. The research results in this study provide great reference value for the preparation of defect-free ceramics.

Download Full Article (PDF)

Keywords

Keywords: Silicon nitride ceramics, DLP, residual carbon, flexural strength

References

1 Krstic, Z., Krstic, V.D.: Silicon nitride: the engineering material of the future, J. Mater Sci., 47, 535 – 552, (2012).

2 Ohji, T.: Microstructural design and mechanical properties of porous silicon nitride ceramics, Mater. Sci. Eng., 498, 5 – 11, (2008).

3 Ding, S., Zeng, Y.P., Jiang, D.: Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant, Mater. Lett., 61, 2277 – 2280, (2007).

4 Lu, H., Bailey, C., Yin, C.: Design for reliability of power electronics modules, Microelectron. Reliab., 49, 1250 – 1255, (2009).

5 Webster, T.J., Patel, A.A., Rahaman, M.N., Sonny Bal, B.: Anti-infective and osteointegration properties of silicon nitride, poly (ether ether ketone), and titanium implants, Acta Biomater., 8, 4447 – 4454, (2012).

6 Zhang, J.,Chen, J.W., Wang, H.J.: High performance porous wave-transmitting silicon nitride ceramics by gel-casting technique, Key Eng. Mater., 512, 869 – 872, (2012).

7 Rueschhoff, L.M., Trice, R.W., Youngblood, J.P.: Near-net shaping of silicon nitride via aqueous room-temperature injection molding and pressureless sintering, Ceram. Int., 43, 10791 – 10798, (2017).

8 Zou, C., Guo, S., Zhou, X., Li, S., Yan, C., Shen, T.: Gel-casting prepared porous Si3N4 ceramics with different contents of Y2O3 and Al2O3 additives, J. Mater. Eng. Perform., 29, 7891 – 7898, (2020).

9 Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., 89, 1771 – 1789, (2006).

10 Yang, X., Li, B., Zhang, C., Wang, S., Liu, K., Zou, C.: Fabrication and properties of porous silicon nitride wave-transparent ceramics via gel-casting and pressureless sintering, Mater. Sci. Eng., 663, 174 – 180, (2016).

11 Altun, A.A., Prochaska, T., Konegger, T., Schwentenwein, M.: Dense, strong, and precise silicon nitride-based ceramic parts by lithography-based ceramic manufacturing, Appl. Sci., 10, 996, (2020).

12 Ryan, K.R., Down, M.P., Banks, C.E.: Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications, Chem. Eng. J., 403, 126162, (2021).

13 Hwa, L.C., Rajoo, S., A.M. Noor, N. Ahmad, M.B. Uday: Recent advances in 3D printing of porous ceramics: A review, Curr. Opin. Solid State Mater. Sci., 21, 323 – 347, (2017).

14 G. Ding, R. He, K. Zhang, M. Xia, C. Feng, D. Fang: Dispersion and stability of SiC ceramic slurry for stereolithography, Ceram. Int., 46, 4720 – 4729, (2020).

15 Shen, M., Zhao, W., Xing, B., Sing, Y., Gao, S., Wang, C., Zhao, Z.: Effects of exposure time and printing angle on the curing characteristics and flexural strength of ceramic samples fabricated via digital light processing, Ceram. Int., 46, 24379 – 24384, (2020).

16 Schmidt, J., Colombo, P.: Digital light processing of ceramic components from polysiloxanes, J. Eur. Ceram. Soc., 38, 57 – 66, (2018).

17 Zakeri, S., Vippola, M., Levänen, E.: A comprehensive review of the photopolymerization of ceramic resins used in stereolithography, Addit. Manuf., 35, 101177, (2020).

18 Tomeckova, V., Halloran, J.W.: Predictive models for the photopolymerization of ceramic suspensions, J. Eur. Ceram. Soc., 30, 2833 – 2840, (2010).

19 Chen, Z., Li, J., Liu, C., Liu, Y., Zhu, J.Lao, C.: Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing, Ceram. Int., 45, 11549 – 11557, (2019).

20 Rasaki, S.A., Xiong. D., Xiong, S., Su, F.,Idrees, M., Chen, Z.: Photopolymerization-based additive manufacturing of ceramics: A systematic review, J. Adv. Ceram., 10, 442 – 471, (2021).

21 Hinczewski, C., Corbel, S., Chartier, T.: Ceramic suspensions suitable for stereolithography, J. Eur. Ceram. Soc., 18, 583 – 590, (1998).

22 Li, X., Zhang, J., Duan, Y., Liu, N., Jiang, J.: Rheology and curability characterization of photosensitive slurries for 3D printing of Si3N4 ceramics, Appl. Sci., 10, 6438, (2020).

23 Huang, R.J., Jiang, Q.G., Wu, H.D.: Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method, Ceram. Int., 45, 5158 – 5162, (2019).

24 Liu, Y., Zhan, L., He, Y. U., Zhang, J: Stereolithographical fabrication of dense Si3N4 ceramics by slurry optimization and pressure sintering, Ceram. Int., 46, 2063 – 2071, (2020).

25 Wu, X., Xu, C., Zhang, Z.: Preparation and optimization of Si3N4 ceramic slurry for low-cost LCD mask stereolithography, Ceram. Int., 47, 9400 – 9408, (2021).

26 He, R., Liu, W., Wu, Z., An, D.: Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method, Ceram. Int., 44, 3412 – 3416, (2018).

27 Bocanegra-Bernal, M.H., Matovic, B.: Dense and near-net-shape fabrication of Si3N4 ceramics, Mater, Sci. Eng., 500, 130 – 149, (2009).

28 Zhang, J., Wei, L., Meng, X., Yu, F., Yang, N., Liu, S.: Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia, Ceram. Int., 46, 8745 – 8753, (2020).

29 Li, H., Liu, Y., Liu, Y., Zeng, Q.: Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores, Ceram. Int., 47, 4884 – 4894, (2021).

30 Ryshkewitch, E.: Compression strength of porous sintered alumina and zirconia: 9th communication to ceramography, J. Am. Ceram. Soc., 36, 65 – 68, (1953).

31 Li, H., Liu, Y., Liu, Y., Zeng, Q., Hu, K.: Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics, Mater. Charact., 168, 110548, (2020).

32 Higgins, R.J., Rhine, W.E., Cima, M.J.: Ceramic surface reactions and carbon retention during non-oxidative binder removal Al2O3/Poly (methyl methacrylate) at 20 – 700 °C, J. Am. Ceram. Soc., 77, 2243 – 2254, (1994).

33 Wang, K., Qiu, M., Jiao, C., Gu J., Xie, D.: Study on defect-free debinding green body of ceramic formed by DLP technology, Ceram. Int., 46, 2438 – 2446, (2020).

34 Li, Y., Kim, H.N., Wu, H.: Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon, J. Eur. Ceram. Soc., 39, 157 – 164, (2019).

35 Hu, F., Zhu, T., Xie, Z., Liu, J.: Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics, Ceram. Int., 46, 12606 – 12612, (2020).

36 Zhou, M., Liu, W., Wu, H.: Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography – optimization of the drying and debinding processes, Ceram. Int., 42, 11598 – 11602, (2016).

37 Wang, K., Bao, C., Zhang, C.: Preparation of high-strength Si3N4 antenna window using selective laser sintering, Ceram. Int., 47, 31277 – 31285, (2021).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH