• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Plots of Surface Temperature and Mass of a Heated, Large Limestone Sample in Terms of Regression Splines and the Programming Language R

R. Lech1, S. Sado2

1 AGH University of Science and Technology in Cracow
2 Zakłady Magnezytowe „ROPCZYCE” S.A. Research and Development Centre of Ceramics

received August 3, 2021, received in revised form July 27, 2022, accepted August 3, 2022

Vol. 13, No. 2, Pages 65-82   DOI: 10.4416/JCST2021-00015

Abstract

The use of the surface temperature and the mass of a limestone sample or sample conversion degree as variables present in various models of limestone calcination is shown in the paper. The linear model of the thermal dissociation rate of a large limestone sample is derived using the R program and the base of B - splines. The statistical significance of the formulated model is demonstrated. The example of the model recording of the thermal dissociation rate of a large limestone sample as a function of heating conditions, including the sample heating time, is shown. The values of the basis functions contained in the regression matrix have been identified. Moreover, the formulas for non-zero cubic basis functions in the selected span knot of the explanatory variable are derived.

Download Full Article (PDF)

Keywords

Limestone, thermal dissociation, thermal analysis, statistical modelling, regression splines

References

1 Zawadzki, J., Bretsznajder, S.: Über den Verlauf der Reaktionen zwischen CaO und CO2 sowie zwischen CaO und SO2, Bull. Acad. Pol. Sci. A., 271 – 286, (1932).

2 Zawadzki, J., Bretsznajder, S.: Zur Kenntnis der heterogenen Reaktionen vom Typus , I. Abweichungen von der Konstanz des Gleichgewichtsdruckes, Scheinbare Gleichgewichte und deren Deutung, Z. Phys. Chem., B.22, 60 – 78, (1933).

3 Zawadzki, J., Bretsznajder, S.: Zur Kenntnis der heterogenen Reaktionen vom Typus , II. Kinetik der Carbonatbildung und Zersetzung, Z. Phys. Chem., B.22, 79 – 96, (1933).

4 Zawadzki, J., Bretsznajder, S.: A contribution to the kinetics of reactions in which solid phases take part, Bull. Acad. Pol. Sci. A., 60 – 64, (1946).

5 Bretsznajder, S.: O przebiegu reakcji typu Aciało stat + Bgaz ←→ Cciało stat, w/in Błasiak E. (et al. eds.), Kataliza i katalizatory, PWT, Warszawa, 1952.

6 Hills, A.W.D.: The mechanism of the thermal decomposition of calcium carbonate, Chem. Eng. Sc., 23, 297 – 320, (1968).

7 Pigoniowa, J., Gumiński, K., Statyka chemiczna, w/in Bielański A. et al. eds., Chemia fizyczna, PWN, Warszawa, 1980.

8 Yagi, S., Kunii, D.: Studies on combustion of carbon particles in flames and fluidized beds, Fifth Symposium (International) on Combustion, Van Nostrand Reinhold, New York, 1954.

9 Verma, C.L.: Simulation of lime shaft kilns using mathematical modelling, Zement – Kalk – Gips, 43, [12], 576 – 582, (1990).

10 Khinast, J., Krammer, G.F., Brunner, Ch., Staudinger, G.: Decomposition of limestone: the influence of CO2 and particle size on the reaction rate, Chem. Eng. Sc., 51, 623 – 634, (1996).

11 Boynton, R.S.: Chemistry and technology of lime and limestone. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, 1980.

12 Oates, J.A.H.: Lime and Limestone. Chemistry and Technology, Production and Uses, Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 1998.

13 Locher, G.: Mathematische Modelle zum Prozess des Brennens von Zementklinker, T.1: Reaktionen und Grundoperationen, ZKG Int., 55, [1], 29 – 38, (2002).

14 Locher, G.: Mathematische Modelle zum Prozess des Brennens von Zementklinker, T.2: Vorwärmer, Calcinator und Bypass, ZKG Int., 55, 39 – 50, (2002).

15 Martins, M.A., Oliveira, L.S., Franca, A.S.: Modellierung und Simulation der Kalksteincalcination im Drehofen, Part I, ZKG Int., 55, [4], 76 – 87, (2002).

16 Martins, M.A., Oliveira, L.S., Franca A.S.: Modellierung und Simulation der Kalksteincalcination im Drehofen, Part II, ZKG Int., 55, [5], 74 – 83, (2002).

17 Gordon, Y.M., Blank, M.E., Madison, V.V., Abovian, P.R.: New technology and shaft furnace for high quality metallurgical lime production, AsiaSteel 2003, India, 1, 1.b1.1 – 1.b.1.6, 2003.

18 Gordon, Y.M., Shvidkiy, V., Yaroshenko, Y.: Optimization of the design and operating parameters of shaft furnaces, METEC Congress, 3rd ICSTI, Düsseldorf, 2003.

19 Stanmore, B.R., Gilot, P.: Review – calcination and carbonation of limestone during thermal cycling for CO2 sequestration, Fuel Process. Technol., 86, 1707 – 1743, (2005).

20 Georgakis, Ch., Chang, C.W., Szekely, J.: A changing grain size model for gas – solid reactions, Chem. Eng. Sci., 34, [8], 1072 – 1075, (1979).

21 Bes, A.: Dynamic process simulation of limestone calcination in normal shaft kilns, Thesis (PhD), Otto-von-Guericke-Universität Magdeburg, 59 – 62, 79 – 80, (2006).

22 Clark, J.B., Hastie, J.W, Kihlborg, L.H.E., Metselaar, R., Thackeray M.M.: Definitions of terms relating to phase transitions of the solid state, Pure & Appl. Chem., 66, [3], 592, (1994).

23 Specht, E.: Wärme- und Stoffübertragung in der Thermoprozesstechnik. Grundlagen, Berechnungen, Prozesse, Vulkan Verlag GmbH, Essen, 198 – 205, 484 – 502, (2004).

24 Hallak, B., Herz, F., Specht, E., Gröpler, R., Warnecke, G.: Simulation of limestone calcination in normal shaft kilns – mathematical model, ZKG, 9, 66 – 71, (2005).

25 Hallak, B., Herz, F., Specht, E., Gröpler, R., Warnecke, G.: Simulation of limestone calcination in normal shaft kilns – Part 2: Influence of process parameters, ZKG, 10, 46 – 50, (2015).

26 Hallak, B., Herz, F., Specht, E., Gröpler, R., Warnecke, G.: Simulation of limestone calcination in normal shaft kilns – Part 3: Influence of particle size distribution and type of limestone, ZKG, 3, 64 – 68, (2016).

27 Piringer, H.: Lime shaft kilns, INFUB-11th European Conference on Industrial Furnaces and Boilers, INFUB-11, Energy Procedia 120, 75 – 95, 2017.

28 Brown, M.E.: Introduction to thermal analysis. Techniques and application, 2.Ed., Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 1 – 12, (2004).

29 Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edit., New York: Springer, 139 – 161, 186 – 189, 203 – 232, (2009).

30 Trzęsiok, J., Trzęsiok, M.: Nieparametryczne metody regresji, w/in Walesiak M., Gatnar E. (Sci.Ed.), Statystyczna analiza danych z wykorzystaniem programu R, Wyd.Nauk. PWN, Warszawa, 2002.

31 R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2020.

32 Kozłowski, S.: Surowce skalne Polski, Wyd. Geologiczne, Warszawa, 1986.

33 Lech, R.: Thermal decomposition of limestone: Part 1 – Influence of properties on calcination time, Sil. Ind., 71, [7 – 8], 103 – 109, (2006).

34 Lech, R.: Termiczny rozkład wapieni: Transport masy i ciepła, Polska Akademia Nauk, Oddział w Krakowie, Ceramika, 105, 29 – 53, (2008).

35 Aczel, A.D., Sounderpandian, J.: Statystyka w zarządzaniu, Wyd. Nauk. PWN SA, Warszawa, 2008.

36 Neter, J., Wasserman, W., Whitmore, G.A.: Applied Statistics, 3 ed., Allyn & Bacon, Inc., Newton, 1988.

37 Faraway, J.J.: Extending the linear model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, 2 ed., CRC Press, Taylor & Francis Group: A Chapman & Hall Book, 2016.

38 Hastie, T., Tibshirani, R.: Generalized additive models, Stat Sci., 1, [3], (1986).

39 Lis, A.: Uogólnione modele addytywne z parametrem połoŻenia, skali i kształtu, Praca magisterska, UW WMIM, 2011.

40 Carl de Boor, C.: A practical guide to splines, New York: Springer-Verlag, 87 – 108, 2001.

41 Davies, T.M.: The book of R. A first course in programming and statistics, No Starch Press, San Francisco, 2016.

42 Hurvich, C.M., Tsai, C.-L.: Regression and Time Series Model Selection in Small Samples, Biometrika, 76, 297 – 307, (1989.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH