Articles
All articles | Recent articles
Improved Catalytic Properties of Pt Cluster Supported on Defective Graphene
Y. Huang1, Z. Yu1, E. Song2
1 School of Science, Nantong University, Nantong 226000, China
2 State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
received November 3, 2021, received in revised form December 2, 2021, accepted December 8, 2021
Vol. 13, No. 1, Pages 39-44 DOI: 10.4416/JCST2021-00020
Abstract
Graphene-supported transition-metal nanoparticles demonstrate extraordinary catalytic activity for CO oxidation. Herein, we have applied the density functional theory to investigate the stability and catalytic properties of a Pt12 cluster adsorbed on a bi-vacancy defective graphene (Pt/graphene). It has been found that the very low energy barrier is only 0.131 eV for the Langmuir-Hinshelwood oxidation process for CO co-adsorbed on a catalyst with an O2 molecule. The following Eley-Rideal oxidation process is carried out with an activation barrier of 0.352 eV. Furthermore, the bi-vacancy site of graphene plays a key role as an anchoring point for the Pt12 cluster owing to the strong d-p orbital hybridization, improving the stability and catalytic activity toward CO oxidation. This unusually high catalytic activity opens a new avenue for fabricating carbon-based catalysts for CO oxidation.
Download Full Article (PDF)
Keywords
Graphene, Pt cluster, defects
References
1 Geim, A.K.: Graphene: status and prospects, Science, 324, 1530 – 1534, (2009).
2 Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb Carbon: A review of graphene, Chem. Rev., 110, 132 – 145, (2010).
3 Zhuo, H.-Y., Zhang, X., Liang, J.-X., Yu, Q., Xiao, H., Li, J.: Theoretical understandings of Graphene-based metal single-atom Catalysts: stability and catalytic performance, Chem. Rev., 120, 12315 – 12341, (2020).
4 Singh, A.K., Penev, E.S., Yakobson, B.I.: Vacancy clusters in graphane as quantum dots, ACS Nano, 4, 3510 – 3514, (2010).
5 Boukhvalov, D.W., Katsnelson, M.I.: Chemical functionalization of graphene with defects, Nano Lett., 8, 4373 – 4379, (2008).
6 Fan, Y., Song, E., Mustafa, T., Liu, R., Qiu, P., Zhou, W., Zhou, Z., Kawasaki, A., Shirasu, K., Hashida, T., Liu, J., Wang, L., Jiang, W., Luo, W.: Liquid-phase assisted engineering of highly strong SiC composite reinforced by multiwalled carbon nanotubes, Adv. Sci., 7, 2002225, (2020).
7 Kim, G., Jhi, S.-H.: Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene, ACS Nano, 5, 805 – 810, (2011).
8 Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykko, P., Nieminen, R.M.: Embedding transition-metal atoms in Graphene: structure, bonding, and magnetism, Phys. Rev. Lett., 102, 126807, (2009).
9 Song, E.H., Wen, Z., Jiang, Q.: CO catalytic oxidation on copper-embedded graphene, J. Phys. Chem. C, 115, 3678 – 3683, (2011).
10 Yoo, E., Okata, T., Akita, T., Kohyama, M., Nakamura, J., Honma, I.: Enhanced electrocatalytic activity of pt subnanoclusters on graphene nanosheet surface, Nano Lett., 9, 2255 – 2259, (2009).
11 Zhang, H., Jin, M., Liu, H., Wang, J., Kim, M. J., Yang, D., Xie, Z., Liu, J., Xia, Y.: Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen, ACS Nano, 5, 8212 – 8222, (2011).
12 Lim, D.-H., Wilcox, J.: Mechanisms of the oxygen reduction reaction on defective graphene-supported pt nanoparticles from first-principles, J. Phys. Chem. C, 116, 3653 – 3660, (2012).
13 Liu, X., Li, L., Meng, C., Han, Y.: Palladium Nanoparticles/Defective graphene composites as oxygen reduction Electrocatalysts: A first-principles study, J. Phys. Chem. C, 116, 2710 – 2719, (2011).
14 Zhang, L., Si, R., Liu, H., Chen, N., Wang, Q., Adair, K., Wang, Z., Chen, J., Song, Z., Li, J., Banis, M. N., Li, R., Sham, T.-K., Gu, M., Liu, L.-M., Botton, G.A., Sun, X.: Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction, Nat. Commun., 10, 4936, (2019).
15 Song, E.H., Yan, J.M., Lian, J.S., Jiang, Q.: External electric field catalyzed N2O decomposition on mn-embedded graphene, J. Phys. Chem. C, 116, 20342 – 20348, (2012).
16 Xiao, B.B., Yang, L., Liu, H.Y., Jiang, X.B., Aleksandr, B., Song, E.H., Jiang, Q.: Designing fluorographene with FeN4 and CoN4 moieties for oxygen electrode reaction: A density functional theory study, Appl. Surf. Sci., 537, 147846, (2021).
17 Hu, C., Song, E., Wang, M., Chen, W., Huang, F., Feng, Z., Liu, J., Wang, J.: Partial-Single-atom, partial-nanoparticle composites enhance water dissociation for hydrogen evolution, Adv. Sci., 8, 2001881, (2021).
18 Zhou, Y., Song, E., Chen, W., Segre, C.U., Zhou, J., Lin, Y.-C., Zhu, C., Ma, R., Liu, P., Chu, S., Thomas, T., Yang, M., Liu, Q., Suenaga, K., Liu, Z., Liu, J., Wang, J.: Dual-metal interbonding as the chemical facilitator for single-atom dispersions, Adv. Mater., 32, 2003484, (2020).
19 Guo, S., Sun, S.: FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction, J. Am. Chem. Soc., 134, 2492 – 2495, (2012).
20 Toyoda, E., Jinnouchi, R., Hatanaka, T., Morimoto, Y., Mitsuhara, K., Visikovskiy, A., Kido, Y.: The d-band structure of Pt nanoclusters correlated with the catalytic activity for an oxygen reduction reaction, J. Phys. Chem. C, 115, 21236 – 21240, (2011).
21 Nethravathi, C., Anumol, E.A., Rajamathi, M., Ravishankar, N., Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity, Nanoscale, 3, 569, (2011).
22 Crampton, A.S., Rötzer, M.D., Ridge, C.J., Schweinberger, F.F., Heiz, U., Yoon, B., Landman, U.: Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters, Nat. Commun., 7, 10389, (2016).
23 Bratlie, K.M., Lee, H., Komvopoulos, K., Yang, P., Somorjai, G.A.: Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett., 7, 3097 – 3101, (2007).
24 Yoo, E., Okada, T., Akita, T., Kohyama, M., Honma, I., Nakamura, J.: Sub-nano-pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells, J. Power Sources, 196, 110 – 115, (2011).
25 Lim, D.-H., Wilcox, J.: DFT-based study on oxygen adsorption on defective graphene-supported pt nanoparticles, J. Phys. Chem. C, 115, 22742 – 22747, (2011).
26 Zhou, M., Zhang, A., Dai, Z., Zhang, C., Feng, Y.P.: Greatly enhanced adsorption and catalytic activity of au and pt clusters on defective graphene, J. Chem. Phys., 132, 194704, (2010).
27 Qin, W., Li, X.: A theoretical study on the catalytic synergetic effects of Pt/Graphene nanocomposites, J. Phys. Chem. C, 114, 19009 – 19015, (2010).
28 Vedala, H., Sorescu, D.C., Kotchey, G.P., Star, A.: Chemical sensitivity of graphene edges decorated with metal nanoparticles, Nano Lett., 11, 2342 – 2347, (2011).
29 Kou, R., Shao, Y., Mei, D., Nie, Z., Wang, D., Wang, C., Viswanathan, V.V., Park, S., Aksay, I.A., Lin, Y., Wang, Y., Liu, J.: Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points, J. Am. Chem. Soc., 133, 2541 – 2547, (2011).
30 Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169 – 11186, (1996).
31 Blöchl, P.E.: Projector augmented-wave method, Phys. Rev. B, 50, 17953 – 17979, (1994).
32 Henkelman, G., Jonsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., 113, 9978 – 9985, (2000).
33 Gao, W., Mueller, J.E., Anton, J., Jiang, Q., Jacob, T.: Nickel cluster growth on defect sites of Graphene: A computational study, Angew. Chem. Int. Edit., 52, 14237 – 14241, (2013).
34 Chen, G., Li, S.J., Su, Y., Wang, V., Mizuseki, H., Kawazoe, Y.: Improved stability and catalytic properties of Au16 cluster supported on graphane, J. Phys. Chem. C, 115, 20168 – 20174, (2011).
35 Fampiou, I., Ramasubramaniam, A.: Binding of pt nanoclusters to point defects in Graphene: adsorption, morphology, and electronic structure, J. Phys. Chem. C, 116, 6543-6555.
36 Lim, D.-H., Negreira, A.S., Wilcox, J.: DFT studies on the interaction of defective graphene-supported fe and al nanoparticles, J. Phys. Chem. C, 115, 8961 – 8970, (2011).
37 Crawford, P., Hu, P.: Importance of electronegativity differences and surface structure in molecular dissociation reactions at transition metal surfaces, J. Phys. Chem. , 110, 24929 – 24935, (2006).
38 Lu, Y.H., Zhou, M., Zhang, C., Feng, Y.P.: Metal-embedded Graphene: A possible catalyst with high activity, J. Phys. Chem. C, 113, 20156 – 20160, (2009).
39 Li, Y., Zhou, Z., Yu, G., Chen, W., Chen, Z.: CO catalytic oxidation on iron-embedded graphene: Computational quest for low-cost nanocatalysts, J. Phys. chem. , 114, 6250 – 6254, (2010).
40 An, W., Pei, Y., Zeng, X.C.: CO oxidation catalyzed by single-walled helical gold nanotube, Nano Lett., 8, 195 – 202, (2008).
41 Molina, L.M., Hammer, B.: The activity of the tetrahedral Au20 cluster: charging and impurity effects, J. Catal., 233, 399 – 404, (2005).
42 Tang, D., Hu, C.: DFT insight into CO oxidation catalyzed by gold Nanoclusters: charge effect and multi-state reactivity, J. Phys. Chem. Lett., 2, 2972 – 2977, (2011).
43 Li, F., Zhao, J., Chen, Z.: Fe-anchored graphene Oxide: A low-cost and easily accessible catalyst for low-temperature CO oxidation, J. Phys. Chem. C, 116, 2507 – 2514, (2012).
44 Zhou, M., Zhang, A., Dai, Z., Feng, Y.P., Zhang, C.: Strain-enhanced stabilization and catalytic activity of metal nanoclusters on graphene, J. Phys. Chem. C, 114, 16541 – 16546, (2010).
45 Jiang, Q., Zhang, J., Ao, Z., Huang, H., He, H., Wu, Y.: First principles study on the CO oxidation on mn-embedded divacancy graphene, Front. Chem., 6, (2018).
46 Jiang, Q., Huang, M., Qian, Y., Miao, Y., Ao, Z.: Excellent sulfur and water resistance for CO oxidation on pt single-atom-catalyst supported by defective graphene: the effect of vacancy type, Appl. Surf. Sci., 566, 150624, (2021).
47 Jiang, Q., Zhang, J., Huang, H., Wu, Y., Ao, Z.: A novel single-atom catalyst for CO oxidation in humid environmental conditions: Ni-embedded divacancy graphene, J. Mater. Chem. A, 8, 287 – 295, (2020).
48 Ackermann, M.D., Pedersen, T.M., Hendriksen, B.L.M., Robach, O., Bobaru, S.C., Popa, I., Quiros, C., Kim, H., Hammer, B., Ferrer, S., Frenken, J.W.M.: Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation, Phys. Rev. Lett., 95, 255505, (2005).
49 Nakai, I., Kondoh, H., Amemiya, K., Nagasaka, M., Nambu, A., Shimada, T., Ohta, T.: Reaction-path switching induced by spatial-distribution change of reactants: CO oxidation on Pt(111), J. Chem. Phys., 121, 5035 – 5038, (2004).
50 Alavi, A., Hu, P., Deutsch, T., Silvestrelli, P.L., Hutter, J.: CO oxidation on Pt(111): An ab initio density functional theory study, Phys. Rev. Lett., 80, 3650, (1998).
51 Eichler, A., Hafner, J., Reaction channels for the catalytic oxidation of CO on Pt(111), Surf. Sci., 435, 58 – 62, (1999).
52 Eichler, A.: CO oxidation on transition metal surfaces: Reaction rates from first principles, Surf. Sci., 498, 314 – 320, (2002).
53 Bleakley, K., Hu, P.: A density functional theory study of the interaction between CO and O on a Pt Surface: CO/Pt(111), O/Pt(111), and CO/O/Pt(111), J. Am. Chem. Soc., 121, 7644 – 7652, (1999).
54 Chen, M.S., Cai, Y., Yan, Z., Gath, K.K., Axnanda, S., Goodman, D.W.: Highly active surfaces for CO oxidation on Rh, Pd, and Pt, Surf. Sci., 601, 5326 – 5331, (2007).
55 Oh, S.-H., Hoflund, G.B.: Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladium oxide powders, J. Catal., 245, 35 – 44, (2007).
56 Liu, W., Zhu, Y. F., Lian, J.S., Jiang, Q.: Adsorption of CO on surfaces of 4d and 5d elements in group VIII, J. Phys. Chem. C, 111, 1005 – 1009, (2006).
57 Nakai, I., Kondoh, H., Shimada, T., Resta, A., Andersen, J.N., Ohta, T.: Mechanism of CO oxidation reaction on O-covered Pd(111) surfaces studied with fast X-ray photoelectron spectroscopy: change of reaction path accompanying phase transition of O domains, J. Chem. Phys., 124, 224712, (2006).
58 Zhang, C.J., Hu, P.: CO oxidation on Pd(100) and Pd(111): A comparative study of reaction pathways and reactivity at low and medium coverages, J. Am. Chem. Soc., 123, 1166 – 1172, (2001).
59 Salo, P., Honkala, K., Alatalo, M., Laasonen, K.: Catalytic oxidation of CO on Pd(111), Surf. Sci., 516, 247 – 253, (2002).
60 Krenn, G., Bako, I., Schennach, R.: CO adsorption and CO and O coadsorption on Rh(111) studied by reflection absorption infrared spectroscopy and density functional theory, J. Chem. Phys., 124, 144703, (2006).
61 Sljivancanin, Z., Hammer, B.: CO oxidation on fully oxygen covered Ru(0001): role of step edges, Phys. Rev. B, 81, 121413, (2010).
62 Liu, D.J.: CO oxidation on Rh(100): multisite atomistic lattice-gas modeling, J. Phys. Chem. C, 111, 14698 – 14706, (2007).
63 Stampfl, C., Scheffler, M.: Density-functional theory study of the catalytic oxidation of CO over transition metal surfaces, Surf. Sci., 433, 119 – 126, (1999).
64 Kimble, M.L., Castleman, A.W., Mitrić, R., Bürgel, C., Bonačić-Koutecký, V.: Reactivity of atomic gold anions toward oxygen and the oxidation of CO: Experiment and theory, J. Am. Chem. Soc., 126, 2526 – 2535, (2004).
65 Socaciu, L.D., Hagen, J., Bernhardt, T.M., Wöste, L., Heiz, U., Häkkinen, H., Landman, U.: Catalytic CO oxidation by free Au2-: experiment and theory, J. Am. Chem. Soc., 125, 10437 – 10445, (2003).
66 Lopez, N., Nørskov, J.K.: Catalytic CO oxidation by a gold Nanoparticle: A density functional study, J. Am. Chem. Soc., 124, 11262 – 11263, (2002).
67 Liu, Z. P., Hu, P., Alavi, A.,: Catalytic role of gold in gold-based catalysts: A density functional theory study on the CO oxidation on gold, J. Am. Chem. Soc., 124, 14770 – 14779, (2002).
68 Kandoi, S., Gokhale, A.A., Grabow, L.C., Dumesic, J.A., Mavrikakis, M.: Why Au and Cu are more selective than pt for preferential oxidation of CO at low temperature, Catal. Lett., 93, 93 – 100, (2004).
Copyright
Göller Verlag GmbH