Articles
All articles | Recent articles
Exploring the Relationship between Crystalline Structure and Intrinsic Properties for MgGa2O4 Transparent Ceramic with the Bond Valence Method
Shiqiao Li, Hao Wang, Bin Wang, Bingtian Tu, Weimin Wang, Zhengyi Fu
State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
received December 10, 2020, received in revised form June 25, 2021, accepted June 27, 2021
Vol. 12, No. 2, Pages 87-96 DOI: 10.4416/JCST2020-00027
Abstract
In this work, a novel spinel MgGa2O4 transparent ceramic was firstly prepared by means of air-presintering combined with hot isostatic pressing sintering. In contrast to the nearly normal spinel MgAl2O4, the MgGa2O4 was confirmed as the approximately inverse spinel with X-ray Rietveld refinement. Meanwhile, the polyhedral bond properties such as bond valence, bond length and bond force constant, which were obtained from the crystal structure parameters by means of the bond valence method, can aid understanding of the relationship between the crystal structure and properties. It was found that the MgGa2O4 with smaller anion position parameter (u) and larger lattice parameter (a) has the shorter tetrahedral bond and longer octahedral bond, compared with MgAl2O4, since there is a larger cation inversion parameter (i) in MgGa2O4. Furthermore, the tetrahedral bond in MgGa2O4 is much stronger than that in MgAl2O4 while the octahedral bond in MgGa2O4 is weaker than that in MgAl2O4. From the bulk modulus, Vickers hardness to the thermal expansion coefficient, the influence of tetrahedral bonds on these properties is gradually decreased while the influence of octahedral bonds on them is progressively increased. Thus, MgGa2O4 has a slightly larger bulk modulus than MgAl2O4. The hardness and thermal expansion coefficient of MgGa2O4 are lower and higher than that of MgAl2O4, respectively.
Download Full Article (PDF)
Keywords
MgGa2O4 transparent ceramic, crystal structure, properties, bond valence method
References
1 Basavaraju, N., Sharma, S., Aurélie, B.: Red persistent luminescence in MgGa2O4: Cr3+– a new phosphor for in vivo imaging, J. Phys. D. Appl. Phys., 46, [37], 542 – 553, (2013).
2 Jiang, B., Chi, F., Wei, X., Chen, Y., Yin, M.: A self-activated MgGa2O4 for persistent luminescence phosphor, J. Appl. Phys., 124, [6], 0631011 – 0631016, (2018).
3 Li, Y., Niu, P., Hu, L., Xu, X., Tang, C.: Monochromatic blue-green and red emission of rare-earth ions in MgGa2O4 spinel, J. Lumin., 129, [10], 1204 – 1206, (2009).
4 Sosman, L.P., Abritta, T., Nakamura, O.: Luminescence and photoacoustic study of MgGa2O4: Cr3+, Phys. Status. Solidi. A., 147, [2], 107 – 110, (1995).
5 Suzuki, T., Hughes, M., Ohishi, Y.: Optical properties of Ni-doped single crystals grown by floating zone method, J. Lumin., 130, [1], 121 – 126, (2010).
6 Wu, S., Xue, J., Wang, R., Li, J.: Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials, J. Alloy. Compd., 5, [85], 542 – 548, (2014).
7 Kan, A., Moriyama, T., Takahashi, T., Ogawa, H.: Cation distributions and microwave dielectric properties of spinel-structured MgGa2O4 ceramics, Jpn. J. Appl. Phys., 52, [9S2], 9 – 15, (2013).
8 Wang, L.L., Cui, X.J., Rensberg, J., Wu, K., Wesch, W., Wendler, E.: Growth and optical waveguide fabrication in spinel MgGa2O4 crystal, Nucl. Instrum. Meth. Phys. Res. B., 4, [9], 153 – 157, (2017).
9 Galazka, Z., Klimm, D., Irmscher, K., Uecker, R., Pietsch, M., Bertram, R., Naumann, M.: MgGa2O4 as a new wide bandgap transparent semiconducting oxide: growth and properties of bulk single crystals, Phys. Status. Solidi. A., 212, [7], 1455 – 1460, (2015).
10 Bacorisen, D., Smith, R., Uberuaga, B.P., Sickafus, K.E., Ball, J.A., Grimes, R.W.: Atomistic simulations of radiation-induced defect formation in spinels: MgAl2O4, MgGa2O4, and MgIn2O4, Phys. Rev. B., 74, [21], 214105 – 214114, (2006).
11 Sickafus, K.E., Wills, J.M., Grimes, N.W.: Structure of spinel, J. Am. Ceram. Soc., 82, [12], 3279 – 3292, (1999).
12 Zong, X., Wang, H., Gu, H., Ren, L., Fu, Z.: A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to C-plane sapphire, Scripta. Mater., 178, [15], 428 – 432, (2020).
13 Liu, X., Wang, H., Lavina, B., Tu, B., Wang, W., Fu, Z.: Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences, Inorg. Chem., 53, [12], 5986 – 5992, (2014).
14 Liu, X., Wang, H., Wang, W., Fu, Z.: Simple method for the hardness estimation of inorganic crystals by the bond valence model, Inorg. Chem., 55, [21], 11089 – 11095, (2016).
15 Brown I.D.: Recent developments in the methods and applications of the bond valence, Chem. Rev., 109, [12], 6858 – 6919, (2009).
16 Liu, X., Wang, H., Wang, W., Fu, Z.: A simple bulk modulus model for crystal materials based on the bond valence model, Phys. Chem. Chem. Phys., 19, 22177 – 22189, (2017).
17 Ren, L., Wang, H., Tu, B., Zong, X., Wang, W., Fu, Z.: Predicting properties of MgO·nAl2O3 by first-principles calculation combined with bond valence models, J. Am. Ceram. Soc., 102, [11], 6913 – 6924, (2019).
18 Amin, B., Khenata, R., Bouhemadou, A., Ahmad, I., Maqbool, M.: Opto-electronic response of spinels MgAl2O4 and MgGa2O4 through modified becke-johnson exchange potential, Physica. B., 407, [13], 2588 – 2592, (2012).
19 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, [8], 443 – 446, (1969).
20 Weidenborner, J.E., Stemple, N.R., Okaya, Y.: Cation distribution and oxygen parameter in magnesium gallate, MgGa2O4, Acta. Crystallogr., 20, [6], 761 – 764, (1966).
21 Brown, I.D., Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, Acta. Crystallogr. B., 41, [4], 244 – 247, (1985).
22 Shahbazi, H., Tataei, M.: Influence of porosity on transparency behavior of MgAl2O4 spinel, experiment vs mie theory, Opt. Mater., 90, [1], 289 – 299, (2019).
23 Krell, A., Waetzig, K., Klimke, J.: Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties, J. Eur. Ceram. Soc., 32, [11], 2887 – 2898, (2012).
24 Bernstein, M., Cruikshank, D., Sandford, S.: Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures, Icarus., 179, [2], 527 – 534, (2005).
25 Daniel, C.H.: Materials for infrared windows and domes properties and performance. 2nd edition. Society of Photo Optical, Inc., New York, (1999), 5 – 30.
26 Sanghera, J., Bayya, S., Villalobos, G., Kim, W., Frantz, J., Shaw, B.: Transparent ceramics for high-energy laser systems, Opt. Mater., 33, [3], 511 – 518, (2011).
27 Liu, X., Wang, H., Tu, B., Wang, W., Fu, Z.: Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic prepared by pressureless sintering, J. Am. Ceram. Soc., 97, [1], 63 – 66, (2014).
28 Tropf, W.J., Thomas, M.E., Rogala, E.W.: Handbook of optics Vol. IV: Optical properties of materials, nonlinear optics and quantum optics. 2nd edition. McGraw Hill, Inc., New York, (1995), 38 – 53.
29 Hofmeister, A.M.: Thermal conductivity of spinels and olivines from vibrational spectroscopy: ambient conditions, Am. Mineral., 86, [10], 1188 – 1208, (2001).
30 Chang, Z.P., Barsch, G.R.: Pressure dependence of single-crystal elastic constants and anharmonic properties of spinel, J. Geophys. Res., 78, [14], 2418 – 2433, (1973).
31 Sun, G.H., Zhang, Q.L., Luo, J.Q.: Bulk crystal growth of Cr-doped MgAl2O4 spinel by czochralski method and properties characterization, Mater. Chem. Phys., 204, 227 – 281, (2018).
32 Tian, Y., Xu, B., Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Metals. Hard. Mater., 33, [1], 93 – 106, (2012).
33 Kondrat'eva, O.N., Tyurin, A.V., Nikiforova, G.E., Khoroshilov, A.V., Smirnova, M.N., Ketsko, V.A., Gavrichev, K.S.: Thermodynamic functions of magnesium gallate MgGa2O4 in the temperature range 0 – 1200 K, Thermochim. Acta., 641, [41], 49 – 54, (2016).
34 Jia, T., Chen, G., Zhang, Y.: Lattice thermal conductivity evaluated using elastic properties, Phys. Rev. B., 95, [15], 155206 – 155212, (2017).
35 Slack, G.A.: Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids., 34, [2], 321 – 335, (1973).
36 Brown, I.D., Shannon, R.D.: Empirical bond-strength-bond-length curves for oxides, Acta. Crystallogr. Sect A., 29, [3], 266 – 282, (1973).
37 Tu, B., Wang, H., Liu, X.: Composition-dependent bonding and hardness of γ-aluminum oxynitride: a first-principles investigation, J. Appl. Phys., 115, [22], 223511 – 223518, (2014).
Copyright
Göller Verlag GmbH