Articles
All articles | Recent articles
Effect of ZrO2 Doping on Strength and Toughness of Mo2NiB2-Based Cermets
W. Li, Z. Fan, T. Ai, H. Dong, P. Jiang, X. Zou
Shaanxi University of Technology, Dongyihuan Road, Hanzhong City, 723000, Shaanxi province, China
received July 12, 2021, received in revised form October 4, 2021, accepted October 11, 2021
Vol. 12, No. 2, Pages 115-124 DOI: 10.4416/JCST2021-00012
Abstract
Mo2NiB2-based cermets possess superior strength and excellent corrosion resistance, however, they usually exhibit poor toughness at room temperature. An improvement in toughness without reducing their strength is critical for the practical application of cermets. In this study, four series of Mo2NiB2-based cermets doped with ZrO2 particles (0 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt%) were fabricated based on the boronizing sintering reaction of a mixture of ball-milled Mo-Ni-B-ZrO2 powders. The effect of the ZrO2 content on the microstructure and crystalline phases was investigated by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD). The flexural strength and fracture toughness of the developed materials were also evaluated. At a ZrO2 mass fraction of 1.0 wt%, the sintered cermet exhibited an optimal microstructure consisting of a continuous Ni phase with embedded Mo2NiB2 (∼ 0.5 μm) particles. The Mo2NiB2-based cermet doped with 1.0 wt% ZrO2 particles displayed the highest flexural strength (1 397.33 MPa), along with significantly enhanced fracture toughness (24.08 MPa m1/2). The enhanced strength could be attributed to the increased dislocation density as well as the obstruction to grain boundary slip caused by the ZrO2 particles. Further, the improved toughness might be attributed to crack deflection, crack bridging, transgranular cracks and ZrO2 phase transformation. This study provides the experimental and theoretical basis for the development of the Mo2NiB2-based cermets.
Download Full Article (PDF)
Keywords
Mo2NiB2-based cermets, flexural strength, fracture toughness, strengthening and toughening mechanism
References
1 Hirata, K., Iwanaga, K., Yamasaki, Y., Takagi, K.: Development of Mo2NiB2 base cermets with high strength and excellent corrosion resistance for plastic injection molding machine parts, J. Jpn. Soc. Powder Powder Metall., 53, 447 – 451, (2006).
2 Dent, A.H., Horlock, A.J., McCartney, D.G., Harris, S.: Microstructure formation in high velocity oxy-fuel thermally sprayed Ni-Cr-Mo-B alloys, Mater. Sci. Eng. A, 283, 242 – 250, (2000).
3 Takagi, K.: High tough boride base cermets produced by reaction sintering, Mater. Chem. Phys., 67, 214 – 219, (2001).
4 Takagi, K.: Development and application of high strength ternary boride base cermets, J. Solid State Chem., 179, 2809 – 2818, (2006).
5 Yamasaki, Y., Nishi, M., Takagi, K.: Development of very high strength Mo2NiB2 complex boride base hard alloy, J. Solid State Chem., 177, 551 – 555, (2004).
6 Takagi, K., Yamasaki, Y., Komai, M.: High-strength boride base hard materials, J. Solid State Chem., 133, 243 – 248, (1997).
7 Takagi, K., Yamasaki, Y.: Effects of Mo/B atomic ratio on the mechanical properties and structure of Mo2NiB2 boride base cermets with Cr and V additions, J. Solid State Chem., 154, 263 – 268, (2000).
8 Chang, S., Hung, L., Yang, T.: The effects of adding micro-scaled niobium carbide on the microstructure, mechanical strength and polarization resistance of the Ti-8Mo-4Co-xNbC composites, Mater. Chem. Phys., 235, 121743, (2019).
9 He, L., Gao, Y., Li, Y., Liu, Z., Yuan, W., Chen, W., Zhao, S., Liu, H., Yan, W.: Effect of TiB2/WC addition on the oxidation behavior of Ti(C,N)-304ss cermets during the early oxidation stage, Corros. Sci., 159, 108 – 118, (2019).
10 Lin, N., Zhao, L., Ma, C., Wang, Z., Wen, J., He, Y.: Enhanced mechanical properties and high temperature oxidation resistance of Ti(C,N)-based cermets containing Zr, J. Alloy Compd., 788, 649 – 657, (2019).
11 Li, R., Li, B., Wang, T., Ren, S., Chen, X., Wang, J., Zhang, G.: Improved fracture toughness of a Mo-12Si-8.5B-3Zr alloy by grain coarsening and its multiple toughening mechanisms, J. Alloy Compd., 743, 716 – 727, (2018).
12 Wang, J., Li, B., Li, R. et al.: High toughness and strength of Mo-12Si-8.5B-ZrB2 alloy resulting from a bimodal α-mo grain structure, Inter. J. Refract. Met. Hard Mater., 86, 105 – 129, (2020).
13 Hochmuth, C. Schliephake, D., Völkl, R. et al.: Influence of zirconium content on microstructure and creep properties of Mo-9Si-8B alloys, Intermetallics, 48, 3 – 9, (2014).
14 Du, W., Ai, Y., He W., Chen, W. Liang, B., Lv, C.: Formation and control of "intragranular" ZrO2 strengthened and toughened Al2O3 ceramics, Ceram. Int., 46, 8452 – 8461, (2020).
15 Rahmani, K., Majzoobi, G.H., Sadooghi, A., Kashfi, M.: Mechanical and physical characterization of Mg-TiO2 and Mg-ZrO2 nanocomposites produced by hot-pressing, Mater. Chem. Phys., 246, 122844, (2020).
16 Oke, S.R., Falodun, O.E., Okoro, A.M., Tshephe, T.S., Olubambi, P.A.: Effect of ZrO2 addition on densification and properties of spark plasma sintered Ti6Al4V-ni, Mater. Today, 18, 2454 – 2460, (2019).
17 Wang, B., Wang, N., Yang, Y., Zhong, H., Ma, M., Zhang, X., Liu, R.: Fabrication, microstructures and mechanical properties of ZrO2 dispersion-strengthened Q345 steel, T. Nonferr Metal Soc., 28,1132 – 1140 (2018).
18 Ajay Kumar, V., Rama Murty Raju, P., Ramanaiah, N., Siriyala, R.: Effect of ZrO2 content on the mechanical properties and microstructure of HAp/ZrO2 nanocomposites, Ceram. Int., 44, 10345 – 10351, (2018).
19 Taha, M.A., Zawrah, M.F.: Fabrication of Al2O3-ZrO2-Ni composites with improved toughness using nano powders prepared by mechanical alloying, Ceram. Int., 46, 19519 – 19529, (2020).
20 AbuShanab, W.S., Moustafa, E.B., Taha, M.A., Youness, R.A.: Synthesis and structural properties characterization of titania/zirconia/calcium silicate nanocomposites for biomedical applications, Appl. Phys. A, 126, 787, (2020).
21 Youness, R.A., Taha, M.A., Ibrahim, M.A.: In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures, Mater. Chem. Phys., 239, 122011, (2020).
22 Takagi, K., Ozaki, S., Komai, M., Matsuo, S.: Sintering mechanism and physical properties of Mo2FeB2 type complex boride, Trans. Mat. Res. Soc. Jpn., 14A, 475 – 478, (1994)
23 Takagi, K., Koike, W., Momozawa, A., Fujima, T.: Effects of cr on the properties of Mo2NiB2 ternary boride, Solid State Sci., 14, 1643 – 1647, (2012).
24 Kubalova, L.M., Fadeeva, V.I.: The effect of deformation treatment on the decomposition of supersaturated Ni(Nb,B) and Ni(Mo,B) solid solutions synthesized by mechanical alloying, J. Alloy. Compd., 586, S61 – S64, (2014).
25 Kubliy, V.Z., Bondar, A.A., Utkin, S.V., Petyukh, V.M., Lysenko, S.I., Velikanova, T. Ya.: Phase equilibria in the nickel corner of the mo-ni-B system at temperatures close to melting, Powder Metall. Met. C+, 47, 211 – 222, (2008).
26 Utkina, S.V., Kubliia, V.Z., Sleptsova, S.V., Bondara, A.A., Levchenkoa, P.P., Osokina, G.A., Velikanova, T.Ya.: Solidus surface of the Mo-Ni-B system, J. Superhard Mater., 41, 3 – 19, (2019).
27 Utkin, S.V., Kublii, V.Z., Sleptsov, S.V., Bondar, A.A., Levchenko, P.P., Osokin, G.A., Velikanov, T.Ya.: Solidus surface of the Mo-Ni-B system, J. Superhard Mater., 41, 287 – 301, (2019).
28 Zhang, L., Huang, Z., Liu, Y., Shen, Y., Li, K., Cao, Z., Ren, Z., Jian, Y.: Effects of mechanical ball milling time on the microstructure and mechanical properties of Mo2NiB2-ni cermets, Materials, 12, 1926, (2019).
29 Yuan, B., Zhang, G.J., Kan, Y.M., Wang, P.L.: Reactive synthesis and mechanical properties of Mo2NiB2 based hard alloy, Inter. J. Refract. Met. Hard Mater., 28; 291 – 296, (2010).
30 Zhang, L., Huang, Z., Liu, Y., Shen, Y., Li, K., Cao, Z., Ren, Z., Jian, Y.: Effect of ni content on the microstructure, mechanical properties and erosive wear of Mo2NiB2-Ni cermets, Ceram. Int., 45, 19695 – 19703, (2019).
31 Vershinina, T.N., Ivanov, M.B., Rimsha, P.B.: The effect of carbon on phase composition and microstructure of cermets based on Mo2NiB2 boride, Inter. J. Refract. Met. Hard Mater., 100, 105650, (2021).
32 Yu, H., Zheng, Y., Liu, W., Zheng, J., Xiong, W.: Effect of mn content on the microstructure and mechanical properties of Mo2FeB2 based cermets, Inter. J. Refract. Met. Hard Mater., 28, 286 – 290, (2010).
33 Yu, H., Liu, W., Zheng, Y.: Effect of carbon content on the microstructure and mechanical properties of Mo2FeB2 based cermets, Inter. J. Refract. Met. Hard Mater., 29, 724 – 728, (2011).
34 Yu, H.Z., Zheng, Y., Liu, W.J., Pang, X.M., Zheng, J.Z., Xiong, W.H.: Effect of Mo/B atomic ratio on the microstructure and mechanical properties of Mo2FeB2 based cermets, Inter. J. Refract. Met. Hard Mater., 28, 338 – 342, (2010).
35 AbuShanab, W.S., Moustafa, E.B., Ghandourah, E., Taha, M.A.: Effect of graphene nanoparticles on the physical and mechanical properties of the Al2024-graphene nanocomposites fabricated by powder metallurgy, Results Phys., 19, 103343, (2020).
36 Yu, H., Liu, W., Zheng, Y.: Microstructure and mechanical properties of liquid phase sintered Mo2FeB2 based cermets, Mater. Des., 32, 3521 – 3525, (2011).
37 Cui, C., Zhu, X., Liu, S., Li, Q., Zhang, M., Zhu, G., Wei, S.: Effect of nano-sized ZrO2 on high temperature performance of Mo- ZrO2 alloy, J. Alloy Compd., 768, 81 – 87, (2018).
38 Li, F., Zhang, X., Sui, C., Wu, J., Wei, H., Zhang, Y.: Microstructure and mechanical properties of Al2O3-ZrO2 ceramic deposited by laser direct material deposition, Ceram. Int., 44, 18960 – 18968, (2018).
Copyright
Göller Verlag GmbH