Articles
All articles | Recent articles
The Effect of the P/Si Ratio on the Preparation and Properties of Phosphoric Acid-Metakaolin Geopolymers
E. Furlani1, E. Aneggi1, A. Rondinella1, M. Zanocco2, L. Fedrizzi1, S. Maschio1
1 University of Udine, Polytechnic Department of Engineering and Architecture, Via Del Cotonificio 108, 33100 Udine, Italy
2 Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606 – 8585 Kyoto, Japan
received September 29, 2020, received in revised form February 26, 2021, accepted February 27, 2021
Vol. 12, No. 1, Pages 19-28 DOI: 10.4416/JCST2020-00022
Abstract
The present research deals with the production and characterization of geopolymers prepared by mixing metakaolin, different amounts of phosphoric acid solution and water. Hardening was performed by aging the geopolymeric pastes in a climatic chamber.
The workability of the pastes has been improved while the H2O/total solid content has been kept constant and the P/Si ratio increased. However, such a benefit implies considerable heat output, which must be controlled in order to limit the formation of extended fractures. The compressive strength of the hardened materials increases with increasing P/Si ratio at a constant H2O/total solid content, whereas their strength decreases with increasing H2O/total solid content at a constant P/Si ratio. The open macroporosity, which is directly dependent on the total amount of water added to the geopolymeric pastes, may explain the above results better than the nano/microporosity and/or chemical bonds that contribute to building up the materials' textural features.
Download Full Article (PDF)
Keywords
Geopolymers, phosphoric acid, workability, FTIR, pore size distribution
References
1 Davidovits, J.: Geopolymers – inorganic polymeric new materials, J. Therm. Anal., 37 [8], 1633 – 1656, (1991).
2 Hajimohammadi, A., Provis, J.L., Van Deventer, J.S.J.: Effect of alumina release rate on the mechanism of geopolymer gel formation, Chem. Mater., 22 [18], 5199 – 5208, (2010).
3 Van Riessen, A., Rickard, W.D.A., Williams, R.P., van Riessen, G.A.: Methods for geopolymer formulation development and microstructural analysis, J. Ceram. Sci. Technol., 8 [3], 421 – 432, (2017).
4 Xu, H., van Deventer, J.S.J.: The geopolymerization of alumino-silicate minerals, J. Miner. Process, 59, 247 – 266, (2000).
5 Khale, D., Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: A review, J. Mater. Sci., 42, 729 – 746, (2007).
6 Kamseu, E., Leonelli, C., Melo Chinje, U., Perera, D.S., Lemougna, P.N.: Polysialate matrixes from Al-rich and Si-rich metakaolins: polycondensation and physico-chemical properties, Interceram., 60, 25 – 31, (2011).
7 Carabba, L., Manzi, S., Rambaldi, E., Ridolfi, G., Bignozzi, M.C.: High-temperature behaviour of alkali-activated composites based on fly ash and recycled refractory particles, J. Ceram. Sci. Technol., 8 [3], 377 – 388, (2017).
8 Constâncio Trindade, A.C., Alcamand, H.A., Ribeiro Borges, P.H., de Andrade Silva, F.: Influence of elevated temperatures on the mechanical behavior of jute-textile-reinforced geopolymers, J. Ceram. Sci. Technol., 8 [3], 389 – 398, (2017).
9 Wagh, A.S.: Chemically bonded phosphate ceramics – a novel class of geopolymers, Ceram. Trans., 165, 107 – 116, (2005).
10 Cao, D., Su, D., Lu, B., Yang, Y.: Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid, J. Chin. Ceram. Soc., 33, 1385 – 1389, (2005).
11 Cu, X., Ping, L., He, Y., Chen, J., Zhou, J.: A novel aluminosilicate geopolymer material with low dielectric loss, Mater. Chem. Phys., 130, 1 – 4, (2011).
12 Le-ping, L., Xue-min, C., Shu-heng, Q., Jun-li, Y., Lin, Z.: Preparation of phosphoric acid-based porous geopolymers, Appl. Clay Sci., 50, 600 – 603, (2010).
13 Lassinantti Gualtieri, M., Romagnoli, M., Gualtieri, F.A.: Preparation of phosphoric acid-based geopolymer foams using limestone as pore forming agent – thermal properties by in situ XRPD and rietveld refinements, J. Eur. Ceram. Soc., 35, 3167 – 3178, (2015).
14 Krizan, D., Zivanovic, B.: Effects of dosage and modulus of water glass on early hydration of alkali-slag cements, Cement Concrete Res., 32 [8], 1181 – 1188, (2002).
15 Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The role of inorganic polymer technology in the development of 'green concrete', Cement Concrete Res., 37 [12], 1590 – 1597, (2007).
16 Palomo, A., Grutzeck, M.W., Blanco, M.T.: Alkali-activated fly ashes: A cement for the future, Cement Concrete Res., 29 [8], 1323 – 1329, (1999).
17 Sakulich, A.R., Anderson, E., Schauer, C., Barsoum, M.W.: Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete, Constr. Build. Mater., 23 [8], 2951 – 295, (2009).
18 Palomo, A., Palacios, M.: Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes - part II. stabilisation of chromium and lead, Cement Concrete Res., 33, [2], 289 – 295, (2003).
19 Leonelli, C., Kamseu, E, Lancellotti, I., Barbieri, L.: Geopolymerization as cold-consolidation techniques for hazardous and non-hazardous wastes, Key Eng. Mater., 751 KEM, 527 – 531, (2017).
20 Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+, J. Hazard. Mater., 157, 2 – 3, 587 – 598, (2008).
21 Qian, G., Sun, D.D., Tay, J.H.: Immobilization of mercury and zinc in an alkali-activated slag matrix, J. Hazard. Mater., 101 [1], 65 – 77, (2003).
22 Puertas, F., Fernández-Jiménez, A.: Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes, Cement Concrete Comp., 25 [3], 287 – 292, (2003).
23 Ke, X., Bernal, S.A., Ye, N., Provis, J.L., Yang, J.: One-part geopolymers based on thermally treated red Mud/NaOH blends, J. Am. Ceram. Soc., 98 [1], 5 – 11, (2015).
24 Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., Huang, Q.: Synthesis and strength optimization of one-part geopolymer based on red mud, Constr. Build. Mater., 111, 317 – 325, (2016).
25 Furlani, E., Maschio, S., Magnan, M., Aneggi, E., Andreatta, F., Lekka, M., Lanzutti, A., Fedrizzi, L.: Synthesis and characterization of geopolymers containing blends of unprocessed steel slag and metakaolin: The role of slag particle size, Ceram. Int., 44, 5226 – 5232, (2018).
26 Furlani, E., Magnan, M., Mingone, E., Deison, M., Aneggi, E., Andreatta, F., Fedrizzi, L., Maschio, S.: Waste olivine and silica sands boost geopolymers' performances: Experimental investigation, Int. J. Environ. Stud., 76 [3], 491 – 506, (2019).
27 Liu, L.P., Cui, X.M., He, Y., Liu, S.D., Gong, S.Y.: The phase evolution of phosphoric acid-based geopolymers at elevated temperatures, Mater. Lett., 66, 10 – 12, (2012).
28 Morsy, M.S., Rashad, A.M., Shoukry, H., Mokhtar, M.M.: Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation, Constr. Build. Mater., 22, 117088, (2019).
29 Louati, S., Baklouti, S., Samet, B.: Geopolymers based on phosphoric acid and illito-kaolinitic clay, Adv. Mater. Sci. Eng., Article ID 2359759, 7 pages, (2016).
30 Gao, L., Zheng, Y., Tang, Y., Yu, J., Yu, X., Liu, B.: Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers, Heliyon, 6 [4], e03853 (2020).
31 Douiri, H., Louati, S., Baklouti, S., Arous, M., Fakhfakh, Z.: Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4, Mater. Lett., 116, 9 – 12, (2014).
32 Douiri, H., Louati, S., Baklouti, S., Arous, M., Fakhfakh, Z.: Enhanced dielectric performance of metakaolin-H3PO4 geopolymers, Mater. Lett., 164, 299 – 302, (2016).
33 Sellami, M., Barre, M., Toumi, M.: Synthesis, thermal properties and electrical conductivity of phosphoric acid-based geopolymer with metakaolin, Appl. Clay Sci., 180, 105192, (2019).
34 Celerier, H., Jouin, J., Mathivet, V., Tessier-Doyen, N., Rossignol, S.: Composition and properties of phosphoric acid-based geopolymers, J. Non-Crystalline Solids, 493, 94 – 98, (2018).
35 Gharzouni, A., Sobrados, I., Joussein, E., Baklouti, S., Rossignol, S.: Predictive tools to control the structure and the properties of metakaolin based geopolymer materials, Colloid. Surface A, 511, 212 – 221, (2016).
36 Kuenzel, C., Neville, T.P., Donatello, S., Vandeperre, L., Boccaccini, A.R., Cheeseman, C.R.: Influence of metakaolin characteristics on the mechanical properties of geopolymers, Appl. Clay Sci., 83 – 84, 308 – 314, (2013).
37 Jenkins, R., Snyder, R.: Introduction to X-ray powder diffractometry, Wiley, New York, 1996.
38 Wang, Q., Li, L., Wu, C.P., Sui, Z.T.: Research on adaptability of slag-based geopolymer with superplasticizer, Key Eng. Mater., 405, 129 – 134, (2009).
39 Nematollahi, B., Sanjayan, J.: Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer, Mater. Design, 57, 667 – 672, (2014).
40 Cassidy, J.E.: Phosphate bonding then and now, Am. Ceram. Soc. Bull., 56 [7], 640 – 643, (1977).
41 Kalyoncu, R.S.: Chemically bonded refractories – a review of the state of the art, Bureau of mines information circular, Washington D.C., 1982.
42 Tchakouté, H.K., Rüscher, C.H., Kamseu, E., Andreola, F., Leonelli, C.: Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements, Appl. Clay Sci., 147, 184 – 194, (2017).
43 Tchakouté, H.K., Rüscher, C.H.: Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study, Appl. Clay Sci., 140, 81 – 87, (2017).
44 Louati, S., Hajjaji, W., Baklouti, S., Samet, B.: Structure and properties of new eco-material obtained by phosphoric acid attack of natural tunisian clay, Appl. Clay Sci., 101, 60 – 67, (2014).
45 Rovnaník, P.: Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Constr. Build. Mater., 24 [7], 1176 – 1183, (2010).
46 Criado, M., Fernández-Jiménez, A., Palomo, A.: Alkali activation of fly ash: effect of the SiO2/Na2O ratio. part I: FTIR study, Microporous Mesoporous Mater., 106 [1 – 3], 180 – 191, (2007).
47 Xu, T., Chen, J.Z., Han, W., Li, Z., Yu, G.: Geopolymer-organic polymer composite synthesized by the interactions of H3PO4 with metakaolinite powders and polyvinyl alcohol, Part. Sci. Technol., 28 [6], 539 – 546, (2010).
48 Cao, D., Su, D., Song, G.: Geopolymeric behavior and structure of lower modulus sodium silicate solutions, J. Chinese Ceram. Soc., 32 [8], 1036 – 1039, (2004).
Copyright
Göller Verlag GmbH