• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Fabrication and Dielectric Properties of LiTaO3 Matrix Ceramics with Added Manganese Dioxide

Y. Yao, Y. Zhang

School of Materials Engineering, Shanghai University of Engineering Science, P. R. China

received August 15, 2019, received in revised form November 2, 2019, accepted November 8, 2019

Vol. 11, No. 1, Pages 27-35   DOI: 10.4416/JCST2019-00053

Abstract

Polycrystalline LiTaO3 ceramics are beset with difficulties with regard to fabrication by means of conventional pressureless sintering because of their own refractory character. In this study, composite ceramics of LiTaO3 with added manganese dioxide were obtained by sintering at 1 250 °C. The sinterability, microstructure and dielectric properties of the LiTaO3 composite ceramics were then investigated. The relative densities of the LiTaO3 composite ceramics were significantly improved by the addition of MnO2 powder. The LiTaO3 composite ceramics achieved the highest relative density (93.1 %) and obtained a well-grained microstructure when the amount of MnO2 added was 5 wt%. Only the LiTaO3 phase in the composite ceramics was observed when the MnO2 content added was less than 3 wt%. The second phase of the Mn3O4 particles existed in the boundaries of the LiTaO3 grains, and the content gradually increased when the mass fraction of added MnO2 was more than 3 wt%. The effects of the MnO2 added on the dielectric properties of the LiTaO3 composite ceramics are studied thoroughly herein. Consequently, the dielectric constant was found to be enhanced, and the dielectric loss decreased in the LiTaO3 composite ceramics with the MnO2 addition (i.e. both frequency- and temperature-dependent). The optimum values of the relative density, microstructure and dielectric properties were obtained when 5 wt% MnO2 was added to the LiTaO3 composite ceramics.

Download Full Article (PDF)

Keywords

LiTaO3 ceramics, manganese dioxide, microstructure, dielectric properties

References

1 Ma, T.F., Wang, J., Du, J., Yuan, L.L., Qian, Z.H., Zhang, Z.T., Zhang, C.: A lateral field excited (yxl)88° LiTaO3 bulk acoustic wave sensor with interdigital electrodes, Ultrasonics, 53, [3], 648 – 651, (2013).

2 Fukuda, T., Matsumura, S., Hirano, H., Ito, T.: Growth of LiTaO3 single crystal for saw device applications, J. Cryst. Growth., 46, [2], 179 – 184, (1979).

3 Satoh, Y., Kawasaki, D., Yamanouchi, K.: High-coupling and high-temperature stable surface acoustic wave substrates using groove-type interdigital transducer, Jpn. J. Appl. Phys., 45, [5B], 4658 – 4661, (2006).

4 Gruber, M., Konetschnik, R., Popov, M., Spitaler, J., Supancic, P., Kiener, D., Bermejo, R.: Atomistic origins of the differences in anisotropic fracture behaviour of LiTaO3, and LiNbO3 single crystals, Acta Mater., 150, 373 – 380, (2018).

5 Gruber, M., Kraleva, I., Supancic, P., Bielen, J., Kiener, D., Bermejo, R.: Strength distribution and fracture analyses of LiNbO3 and LiTaO3 single crystals under biaxial loading, J. Eur. Ceram. Soc., 37, [14], 4397 – 4406, (2017).

6 Fukuda, T., Matsumura, S., Hirano, H., Ito, T.: Growth of LiTaO3 single crystal for saw device applications, J. Cryst. Growth., 46, [2], 179 – 184, (1979).

7 Sinclair, D.C., West, A.R.: Electrical properties of a LiTaO3 single crystal, Phys. Rev. B: Condens. Matter., 39, [18], 13486 – 13492, (1989).

8 Reichenbach, P., Kampfe, T., Thiessen, A., Haussmann, A., Woike, T., Eng, L.M.: Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals, Appl. Phys. Lett.,105, [12], 122906(1 – 5), (2014).

9 Chen, C.F., Brennecka, G.L., King, G., Tegtmeier, E.L., Holesinger, T., Ivy, J., Yang, P.: Processing of crack-free high density polycrystalline LiTaO3 ceramics, J. Mater. Sci. Mater. Electron., 28, [4], 3725 – 3732, (2017).

10 Zainuddin, L.W., Kamarulzaman, N.: Effect of sintering time on the purity and morphology of LiTaO3, Adv. Mater. Res., 501, 129 – 132, (2012).

11 Bomlai, P., Sinsap, P., Muensit, S., Milne, S.J.: Effect of MnO on the phase development, microstructures, and dielectric properties of 0.95Na0.5K0.5NbO3−0.05LiTaO3 ceramics, J. Am. Ceram. Soc., 91, [2], 624 – 627, (2008).

12 Zhou, J.J., Li, J.F., Wang, K., Zhang, X.W.: Phase structure and electrical properties of (Li,Ta)-doped (K,Na)NbO3 lead-free piezoceramics in the vicinity of Na/K = 50/50, J. Mater. Sci., 46, [15], 5111 – 5116, (2011).

13 Ye, Z.G., Von Der Mühll, R., Ravez, J.: New oxyfluorides and highly densified ceramics related to LiNbO3, J. Phys. Chem. Solids., 50, [8], 809 – 812, (1989).

14 Shimada, S., Kodaira, K., Matsushita, T.: Sintering LiTaO3 and KTaO3 with the aid of manganese oxide, J. Mater. Sci., 19, [4], 1385 – 1390, (1984).

15 Bamba, N., Yokouchi, T., Takaoka, J., Elouadi, B., Fukami, T.: Effects of CaTiO3 on electrical properties in LiTaO3 ceramics, Ferroelectrics, 304, [1], 135 – 138, (2004)

16 Huanosta, A., Alvarez, E., Villafuerte-Castrejón, M.E., West, A.R.: Electrical properties of Mg-doped LiTaO3 ceramics, Mater. Res. Bull., 39, [14], 2229 – 2240, (2004).

17 Lin, P.J., Bursill, L.A.: High-resolution study of Li(1−x)AgxTaO3, Micron., 13, [3], 275 – 27, (1982).

18 Chao, S., Dogan, F.: Effects of manganese doping on the dielectric properties of titanium dioxide ceramics, J. Am. Ceram. Soc., 94, [1], 179 – 186, (2011).

19 Kulawik, J., Szwagierczak, D.: Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics, J. Eur. Ceram. Soc., 27, [5], 2281 – 2286, (2007).

20 Wang, C.C., Ni, W., Zhang, D., Sun, X., Zhang, N.: Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range, J. Electroceram., 36, [1 – 4], 46 – 57, (2016).

21 Li, X.J., Wang, Q., Li, Q.L.: Effects of MnO2 addition on microstructure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics, J. Electroceram., 20, [2], 89 – 94, (2008).

22 Ng, Y.S., Alexander, S.M.: Structural studies of manganese stabilised lead-zirconate-titanate, Ferroelectrics, 60, [1], 79 – 79, (1984).

23 Yan, Y., Kyung-Hoon Cho, Priya, S., Feteira, A.: Identification and effect of secondary phase in MnO2-doped 0.8Pb(Zr0.52Ti0.48)O3-0.2Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics, J. Am. Ceram. Soc., 94, [11], 3953 – 3959, (2011).

24 Hou, Y.D., Lu, P.X., Zhu, M.K., Song, X.M., Tang, J.L., Wang, B., Yan, H.: Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics, Mater. Sci. Eng., B, 116, [1], 104 – 108, (2005).

25 Cen, Z., Wang, X., Huan, Y., Zhen, Y., Feng, W., Li, L.: Defect engineering on phase structure and temperature stability of KNN-based ceramics sintered in different atmospheres, J. Am. Ceram. Soc., 101, [7], 3032 – 3043, (2018).

26 La Rosa-Toro, A., Berenguer, R., Quijada, C., Montilla, F., Morallón, E., Vázquez, J.L.: Preparation and characterization of copper-doped cobalt oxide electrodes, J. Phys. Chem. B., 110, [47], 24021 – 24029, (2006).

27 Wang, L., Wei, R., Ma, W., Ming, L., Peng, S., Wu, X.: Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics, Aip. Adv., 5, [9], 66 – 51, (2015).

28 Huan, Y., Wang, X., Wei, T., Zhao, P., Xie, J., Ye, Z.: Defect control for enhanced piezoelectric properties in SnO2 and ZrO2 co-modified KNN ceramics fired under reducing atmosphere, J. Eur. Ceram. Soc., 37, [5], 2057 – 2065, (2017).

29 Xiao, M., Wei, Y., Zhang, P.: The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic, Mater. Chem. Phys., 225, 99 – 104, (2019).

30 Sun, Y., Liu, H., Hao, H., Zhang, S.: Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3-Na0.5Bi0.5TiO3-Nb2O5 X8R systems, J. Am. Ceram. Soc., 99, [9], 3067 – 3073, (2016).

31 Guo, Q., Hou, L., Li, F., Xia, F., Wang, P., Hao, H., Sun, H., Liu, H., Zhang, S: Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics, J. Am. Ceram. Soc., [12], 7428 – 7435, (2019).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH