Articles
All articles | Recent articles
Fabrication and Dielectric Properties of LiTaO3 Matrix Ceramics with Added Manganese Dioxide
Y. Yao, Y. Zhang
School of Materials Engineering, Shanghai University of Engineering Science, P. R. China
received August 15, 2019, received in revised form November 2, 2019, accepted November 8, 2019
Vol. 11, No. 1, Pages 27-35 DOI: 10.4416/JCST2019-00053
Abstract
Polycrystalline LiTaO3 ceramics are beset with difficulties with regard to fabrication by means of conventional pressureless sintering because of their own refractory character. In this study, composite ceramics of LiTaO3 with added manganese dioxide were obtained by sintering at 1 250 °C. The sinterability, microstructure and dielectric properties of the LiTaO3 composite ceramics were then investigated. The relative densities of the LiTaO3 composite ceramics were significantly improved by the addition of MnO2 powder. The LiTaO3 composite ceramics achieved the highest relative density (93.1 %) and obtained a well-grained microstructure when the amount of MnO2 added was 5 wt%. Only the LiTaO3 phase in the composite ceramics was observed when the MnO2 content added was less than 3 wt%. The second phase of the Mn3O4 particles existed in the boundaries of the LiTaO3 grains, and the content gradually increased when the mass fraction of added MnO2 was more than 3 wt%. The effects of the MnO2 added on the dielectric properties of the LiTaO3 composite ceramics are studied thoroughly herein. Consequently, the dielectric constant was found to be enhanced, and the dielectric loss decreased in the LiTaO3 composite ceramics with the MnO2 addition (i.e. both frequency- and temperature-dependent). The optimum values of the relative density, microstructure and dielectric properties were obtained when 5 wt% MnO2 was added to the LiTaO3 composite ceramics.
Download Full Article (PDF)
Keywords
LiTaO3 ceramics, manganese dioxide, microstructure, dielectric properties
References
1 Ma, T.F., Wang, J., Du, J., Yuan, L.L., Qian, Z.H., Zhang, Z.T., Zhang, C.: A lateral field excited (yxl)88° LiTaO3 bulk acoustic wave sensor with interdigital electrodes, Ultrasonics, 53, [3], 648 – 651, (2013).
2 Fukuda, T., Matsumura, S., Hirano, H., Ito, T.: Growth of LiTaO3 single crystal for saw device applications, J. Cryst. Growth., 46, [2], 179 – 184, (1979).
3 Satoh, Y., Kawasaki, D., Yamanouchi, K.: High-coupling and high-temperature stable surface acoustic wave substrates using groove-type interdigital transducer, Jpn. J. Appl. Phys., 45, [5B], 4658 – 4661, (2006).
4 Gruber, M., Konetschnik, R., Popov, M., Spitaler, J., Supancic, P., Kiener, D., Bermejo, R.: Atomistic origins of the differences in anisotropic fracture behaviour of LiTaO3, and LiNbO3 single crystals, Acta Mater., 150, 373 – 380, (2018).
5 Gruber, M., Kraleva, I., Supancic, P., Bielen, J., Kiener, D., Bermejo, R.: Strength distribution and fracture analyses of LiNbO3 and LiTaO3 single crystals under biaxial loading, J. Eur. Ceram. Soc., 37, [14], 4397 – 4406, (2017).
6 Fukuda, T., Matsumura, S., Hirano, H., Ito, T.: Growth of LiTaO3 single crystal for saw device applications, J. Cryst. Growth., 46, [2], 179 – 184, (1979).
7 Sinclair, D.C., West, A.R.: Electrical properties of a LiTaO3 single crystal, Phys. Rev. B: Condens. Matter., 39, [18], 13486 – 13492, (1989).
8 Reichenbach, P., Kampfe, T., Thiessen, A., Haussmann, A., Woike, T., Eng, L.M.: Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals, Appl. Phys. Lett.,105, [12], 122906(1 – 5), (2014).
9 Chen, C.F., Brennecka, G.L., King, G., Tegtmeier, E.L., Holesinger, T., Ivy, J., Yang, P.: Processing of crack-free high density polycrystalline LiTaO3 ceramics, J. Mater. Sci. Mater. Electron., 28, [4], 3725 – 3732, (2017).
10 Zainuddin, L.W., Kamarulzaman, N.: Effect of sintering time on the purity and morphology of LiTaO3, Adv. Mater. Res., 501, 129 – 132, (2012).
11 Bomlai, P., Sinsap, P., Muensit, S., Milne, S.J.: Effect of MnO on the phase development, microstructures, and dielectric properties of 0.95Na0.5K0.5NbO3−0.05LiTaO3 ceramics, J. Am. Ceram. Soc., 91, [2], 624 – 627, (2008).
12 Zhou, J.J., Li, J.F., Wang, K., Zhang, X.W.: Phase structure and electrical properties of (Li,Ta)-doped (K,Na)NbO3 lead-free piezoceramics in the vicinity of Na/K = 50/50, J. Mater. Sci., 46, [15], 5111 – 5116, (2011).
13 Ye, Z.G., Von Der Mühll, R., Ravez, J.: New oxyfluorides and highly densified ceramics related to LiNbO3, J. Phys. Chem. Solids., 50, [8], 809 – 812, (1989).
14 Shimada, S., Kodaira, K., Matsushita, T.: Sintering LiTaO3 and KTaO3 with the aid of manganese oxide, J. Mater. Sci., 19, [4], 1385 – 1390, (1984).
15 Bamba, N., Yokouchi, T., Takaoka, J., Elouadi, B., Fukami, T.: Effects of CaTiO3 on electrical properties in LiTaO3 ceramics, Ferroelectrics, 304, [1], 135 – 138, (2004)
16 Huanosta, A., Alvarez, E., Villafuerte-Castrejón, M.E., West, A.R.: Electrical properties of Mg-doped LiTaO3 ceramics, Mater. Res. Bull., 39, [14], 2229 – 2240, (2004).
17 Lin, P.J., Bursill, L.A.: High-resolution study of Li(1−x)AgxTaO3, Micron., 13, [3], 275 – 27, (1982).
18 Chao, S., Dogan, F.: Effects of manganese doping on the dielectric properties of titanium dioxide ceramics, J. Am. Ceram. Soc., 94, [1], 179 – 186, (2011).
19 Kulawik, J., Szwagierczak, D.: Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics, J. Eur. Ceram. Soc., 27, [5], 2281 – 2286, (2007).
20 Wang, C.C., Ni, W., Zhang, D., Sun, X., Zhang, N.: Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range, J. Electroceram., 36, [1 – 4], 46 – 57, (2016).
21 Li, X.J., Wang, Q., Li, Q.L.: Effects of MnO2 addition on microstructure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics, J. Electroceram., 20, [2], 89 – 94, (2008).
22 Ng, Y.S., Alexander, S.M.: Structural studies of manganese stabilised lead-zirconate-titanate, Ferroelectrics, 60, [1], 79 – 79, (1984).
23 Yan, Y., Kyung-Hoon Cho, Priya, S., Feteira, A.: Identification and effect of secondary phase in MnO2-doped 0.8Pb(Zr0.52Ti0.48)O3-0.2Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics, J. Am. Ceram. Soc., 94, [11], 3953 – 3959, (2011).
24 Hou, Y.D., Lu, P.X., Zhu, M.K., Song, X.M., Tang, J.L., Wang, B., Yan, H.: Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics, Mater. Sci. Eng., B, 116, [1], 104 – 108, (2005).
25 Cen, Z., Wang, X., Huan, Y., Zhen, Y., Feng, W., Li, L.: Defect engineering on phase structure and temperature stability of KNN-based ceramics sintered in different atmospheres, J. Am. Ceram. Soc., 101, [7], 3032 – 3043, (2018).
26 La Rosa-Toro, A., Berenguer, R., Quijada, C., Montilla, F., Morallón, E., Vázquez, J.L.: Preparation and characterization of copper-doped cobalt oxide electrodes, J. Phys. Chem. B., 110, [47], 24021 – 24029, (2006).
27 Wang, L., Wei, R., Ma, W., Ming, L., Peng, S., Wu, X.: Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics, Aip. Adv., 5, [9], 66 – 51, (2015).
28 Huan, Y., Wang, X., Wei, T., Zhao, P., Xie, J., Ye, Z.: Defect control for enhanced piezoelectric properties in SnO2 and ZrO2 co-modified KNN ceramics fired under reducing atmosphere, J. Eur. Ceram. Soc., 37, [5], 2057 – 2065, (2017).
29 Xiao, M., Wei, Y., Zhang, P.: The effect of sintering temperature on the crystal structure and microwave dielectric properties of CaCoSi2O6 ceramic, Mater. Chem. Phys., 225, 99 – 104, (2019).
30 Sun, Y., Liu, H., Hao, H., Zhang, S.: Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3-Na0.5Bi0.5TiO3-Nb2O5 X8R systems, J. Am. Ceram. Soc., 99, [9], 3067 – 3073, (2016).
31 Guo, Q., Hou, L., Li, F., Xia, F., Wang, P., Hao, H., Sun, H., Liu, H., Zhang, S: Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics, J. Am. Ceram. Soc., [12], 7428 – 7435, (2019).
Copyright
Göller Verlag GmbH