Articles
All articles | Recent articles
Low-Temperature Sintering and Microwave Dielectric Properties of Li2O-3ZnO-5TiO2 Ceramics Doped with B2O3
J. Liu1, J. Zhu1,2, Y. Zeng2
1 College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
2 Shenzhen Zhenhua Fu Electronics Co., Ltd., Shenzhen, Guangdong 518109, China
received July 8, 2019, received in revised form August 9, 2019, accepted August 14, 2019
Vol. 10, No. 2, Pages 1-8 DOI: 10.4416/JCST2019-00055
Abstract
Phase composition, crystal structure as well as microwave dielectric properties of Li2O-3ZnO-5TiO2 ceramics (LZT135, for short) with the addition of B2O3 and TiO2 were investigated. X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) results revealed that the samples with added B2O3 and sintered at 900 °C had formed solid solutions with a similar crystal structure to Zn2Ti3O8. When 0.25 wt% B2O3 was added, LZT135 ceramics could be densified at about 900 °C, while the negative τf value of about -31.5 ppm/K restricted its applications. TiO2 was added for further adjustment of the τf value of LZT135 ceramics. Finally, with the addition of 0.25 wt% B2O3 and 9 wt% TiO2, near zero τf values of about -0.5 ppm/K can be achieved for LZT135 ceramics, and at the same time, high Qf values of about 48 300 GHz are attractive for low-temperature co-firing ceramics technology.
Download Full Article (PDF)
Keywords
Microwave dielectric properties, LTCC, Li2O-3ZnO-5TiO2
References
1 Sebastian, M.T., Jantunen, H.: Low loss dielectric materials for LTCC applications: A review, Int. Mater. Rev., 53, 57 – 90, (2008).
2 George, S., Anjana, P.S., Deepu, V.N., Mohanan, P., Sebastian, M.T.: Low-temperature sintering and microwave dielectric properties of Li2MgSiO4 ceramics, J. Am. Ceram. Soc., 92, 1244 – 1249, (2009).
3 Yuan, L.L., Bian, J.J.: Microwave dielectric properties of the lithium compounds with rock salt structure, Ferroelectrics, 387, 123 – 129, (2009).
4 Zhou, D., Wang H., Pang L.X., Yao X., Wu X.G.: Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver, J. Am. Ceram. Soc., 91, 4115 – 4117, (2008).
5 Borisevich, A.Y., Davies, P.K.: Crystalline structure and dielectric properties of Li1+x-yNb1-x-3yTix+4yO3 M-phase solid solutions, J. Am. Ceram. Soc., 85, 573 – 578, (2002).
6 Bahel, S., Singh, R., Kaur, G., Narang, S.B.: Low fire M-phase lithium based dielectric ceramics for microwave applications: A review (I), Ferroelectrics, 502, 49 – 56, (2016).
7 Lan, X.K., Zou, Z.Y., Lu, W.Z., Zhu, J.H., Lei, W.: Phase transition and low-temperature sintering of Zn(Mn1-xAlx)2O4 ceramics for LTCC applications, Ceram. Int., 42, 17731 – 17735, (2016).
8 Cao, Q.S., Lu, W.Z., Wang, X.C., Zhu, J.H., Ullah, B., Lei, W.: Novel zinc manganese oxide-based microwave dielectric ceramics for LTCC applications, Ceram. Int., 41, 9152 – 9156, (2015).
9 Chen, H.W., Su, H., Zhang, H.W., Zhou, T.C., Zhang, B.W., Zhang, J.F., Tang, X.L.: Low-temperature sintering and microwave dielectric properties of (Zn1-xCox)2SiO4 ceramics, Ceram. Int., 40, 14655 – 14659, (2014).
10 George, S., Sebastian, M.T.: Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics, J. Am. Ceram. Soc., 93, 2164 – 2166, (2010).
11 George, S., Sebastian, M.T.: Low-temperature sintering and microwave dielectric properties of Li2ATi3O8 (A=Mg, Zn) ceramics, Int. J. Appl. Ceram. Technol., 8, 1400 – 1407, (2011).
12 Zhou, H.F., Liu, X.B., Chen, X.L., Fang, L., Wang, Y.L.: ZnLi2/3Ti4/3O4: A new low loss spinel microwave dielectric ceramic, J. Eur. Ceram. Soc., 32, 261 – 265, (2012).
13 Zhu, J.H., Liu, J.Y., Zeng, Y.: Low temperature sintering and microwave dielectric properties of Li2O-3ZnO-5TiO2 ceramics doped with V2O5, J. Mater. Sci.: Mater. Electron., 29, 14455 – 14461, (2018).
14 Zeng, Q., Li, W., Shi, J., Guo, J.: Fabrication and microwave dielectric properties of a new LTCC ceramic composite based on Li2O-Nb2O5-TiO2 system, Mater. Lett., 60, 3203 – 3206, (2006).
15 Liu, C.Y., Tsai, B.G., Weng, M.H., Huang, S.J.: Influence of B2O3 additive on microwave dielectric properties of Li2ZnTi3O8 ceramics for LTCC applications, Int. J. Appl. Ceram. Technol., 10, E49 – E56, (2013).
16 He, M., Zhang, H.W.: Low-temperature firing and microwave properties of TiO2 modified Li2ZnTi3O8 ceramics doped with B2O3, J. Mater. Sci.: Mater. Electron., 24, 3303 – 3306, (2013).
17 Hakki, B.W., Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans. Microwave Theory Tech., 8, 402 – 410, (1960).
18 Courtney, W.E.: Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators, IEEE Trans. Microwave Theory Tech., 18, 476 – 485, (1970).
19 Liu, X.B., Zhou, H.F., Chen, X.L., Fang, L.: Phase structure and microwave dielectric properties of (1-x)Li2Zn3Ti4O12-xTiO2 ceramics, J. Alloy. Compd., 515, 22 – 25, (2012).
20 Paladino, A.E.: Temperature-compensated MgTi2O5-TiO2 dielectrics, J. Am. Ceram. Soc., 54, 168 – 169, (1971).
21 Fukuda, K., Kitoh, R., Awai, I.: Microwave characteristics of TiO2-Bi2O3 dielectric resonator, Jpn. J. Appl. Phys., 32, 4584 – 4588, (1993).
22 Lei, W., Lu, W.Z., Zhu, J.H., Wang, X.H.: Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites, Mater. Lett., 61, 4066 – 4069, (2007).
23 Alford, N. McN., Breeze J., Aupi, X.: Dielectric loss of oxide single crystals and polycrystalline analogues from 10 K to 300 K, Key Eng. Mater., 224 – 226, 17 – 22, (2002).
Copyright
Göller Verlag GmbH