• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Electric Field-Assisted Sintering of Gadolinium-Doped Ceria: Sintering and Grain Growth Kinetics

S. K. Sistla1, T. Mishra2, Y. Deng1, A. Kaletsch1, M. Bram2, C. Broeckmann1

1 Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, Augustinerbach 4, D-52062 Aachen, Germany
2 Institute of Energy and Climate Research IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

received June 18, 2019, received in revised form August 17, 2019, accepted October 18, 2019

Vol. 11, No. 1, Pages 17-26   DOI: 10.4416/JCST2019-00045

Abstract

The densification and grain growth kinetics during field-assisted sintering of gadolinium-doped (10 mol%) ceria (GDC10) were analyzed by conducting isothermal sintering experiments. The model parameters, namely, a stress exponent of ∼ 2 and apparent activation energy of ∼ 260 kJ/mol for the densification have been determined experimentally. Subsequently, the grain growth has been described by a power law with an exponent of 2 and an activation energy of ∼ 200 kJ/mol. Such values suggest that the dominating densification mechanism combines both diffusion and dislocation motion. A numerical model has been utilized to predict the densification curves, which show a satisfactory fit with the experimental curves. Particularly, it has been shown that grain growth kinetics, explicitly, needs to be taken into account in the densification models, to accurately predict the shrinkage during sintering.

Download Full Article (PDF)

Keywords

Field-assisted sintering technology (FAST), gadolinium-doped ceria, modeling, densification, grain growth

References

1   Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., et al.: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments, Adv. Eng. Mater., 16, 830 – 849, (2014), DOI: 10.1002/adem.201300409.

2   Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 41, 763 – 77, (2006), DOI: 10.1007/s10853 – 006 – 6555 – 2.

3   Mogensen, M., Sammes, N.M., Tompsett, G.A.: Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 129, 63 – 94, (2000), DOI: 10.1016/S0167 – 2738(99)00318 – 5.

4   Brandon, N.P., Corcoran, D., Cummins, D., Duckett, A., El-Khoury, K., et al.: Development of metal supported solid oxide fuel cells for operation at 500 – 600 °C, J. Mater. Eng. Perform., 13, 253 – 256, (2004), DOI: 10.1361/10599490419135.

5   Rojek, V., Roehrens, D., Brandner, M., Menzler, N.H., Guillon, O., et al.: Development of high performance anodes for metal-supported fuel cells, ECS Trans., 68, 1297 – 1307, (2015), DOI: 10.1149/06801.1297ecst.

6   Nielsen, J., Sudireddy, B.R., Hagen, A., Persson, Å.H.: Performance factors and sulfur tolerance of metal supported solid oxide fuel cells with nanostructured Ni:GDC infiltrated anodes, J. Electrochem. Soc., 163, F574 – F580, (2016), DOI: 10.1149/2.1081606jes.

7   Bernard-Granger, G., Guizard, C.: Spark plasma sintering of a commercially available granulated zirconia powder: I. sintering path and hypotheses about the mechanism(s) controlling densification, Acta Metall., 55, 3493 – 3504, (2007), DOI: 10.1016/j.actamat.2007.01.048.

8   Bernard-Granger, G., Addad, A., Fantozzi, G., Bonnefont, G., Guizard, C., et al.: Spark plasma sintering of a commercially available granulated zirconia powder: Comparison with hot-pressing, Acta Metall., 58, 3390 – 3399, (2010), DOI: 10.1016/j.actamat.2010.02.013.

9   Langer, J., Hoffmann, M.J., Guillon, O.: Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina, Acta Metall., 57, 5454 – 5465, (2009), DOI: 10.1016/j.actamat.2009.07.043.

10   Langer, J., Hoffmann, M.J., Guillon, O.: Electric field-assisted sintering and hot pressing of semiconductive zinc Oxide: A comparative study, J. Am. Ceram. Soc., 94, 2344 – 2353, (2011), DOI: 10.1111/j.1551 – 2916.2011.04396.x.

11   Langer, J., Hoffmann, M.J., Guillon, O.: Electric field-assisted sintering in comparison with the hot pressing of yttria-stabilized zirconia, J. Am. Ceram. Soc., 94, 24 – 31, (2011), DOI: 10.1111/j.1551 – 2916.2010.04016.x.

12   Chakravarty, D., Chokshi, A.H.: Direct characterizing of densification mechanisms during spark plasma sintering, J. Am. Ceram. Soc., 97, 765 – 771, (2014), DOI: 10.1111/jace.12796.

13   Trzaska, Z., Cours, R., Monchoux, J.-P.: Densification of Ni and TiAl by SPS: kinetics and microscopic mechanisms, Metall. Mater. Trans. A, 49, 4849 – 4859, (2018), DOI: 10.1007/s11661 – 018 – 4775 – 0.

14   Guyot, P., Antou, G., Pradeilles, N., Weibel, A., Vandenhende, M., et al.: Hot pressing and spark plasma sintering of alumina: discussion about an analytical modelling used for sintering mechanism determination, Scripta Mater., 84 – 85, 35 – 38, (2014), DOI: 10.1016/j.scriptamat.2014.04.013.

15   Ni, D.W., Schmidt, C.G., Teocoli, F., Kaiser, A., Andersen, K.B., et al.: Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95 tape cast layers: A comprehensive study on heuristic methods, J. Eur. Ceram. Soc., 33, 2529 – 2537, (2013), DOI: 10.1016/j.jeurceramsoc.2013.03.025.

16   Chen, I.-W.: Grain boundary kinetics in oxide ceramics with the cubic fluorite crystal structure and its derivatives, Interface Sci., 8, 147 – 156, (2000), DOI: 10.1023/A:1008742404071.

17   Frost, H.J., Ashby, M.F.: Deformation-mechanism maps: The plasticity and creep of metals and ceramics. Oxford, Paris: Pergamon Press; 1982.

18   Rahaman, M.N.: Sintering of ceramics. Boca Ratón, Florida: CRC Press; 2008.

19   Routbort, J.L., Goretta, K.C., Arellano-López, A.R. de, Wolfenstine, J.: Creep of Ce0.9Gd0.1O1.95, Scripta Mater., 38, 315 – 320, (1997), DOI: 10.1016/S1359 – 6462(97)00452 – 1.

20   Lipińska-Chwałek, M., Pećanac, G., Malzbender, J.: Creep behaviour of membrane and substrate materials for oxygen separation units, J. Eur. Ceram. Soc., 33, 1841 – 1848, (2013), DOI: 10.1016/j.jeurceramsoc.2013.02.007.

21   Lipińska-Chwałek, M., Schulze-Küppers, F., Malzbender, J.: Mechanical properties of pure and doped cerium oxide, J. Eur. Ceram. Soc., 35, 1539 – 1547, (2015), DOI: 10.1016/j.jeurceramsoc.2014.11.036.

22   He, Z., Yuan, H., Glasscock, J.A., Chatzichristodoulou, C., Phair, J.W., et al.: Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95-δ in a reducing atmosphere, Acta Metall., 58, 3860 – 3866, (2010), DOI: 10.1016/j.actamat.2010.03.046.

23   German, R.M.: Geometric trajectories during sintering. In: Sintering: From empirical observations to scientific principles: Elsevier; 141 – 181, (2014), DOI: 10.1016/B978 – 0-12 – 401682 – 8.00006 – 9.

24   Kraft, T., Riedel, H.: Numerical simulation of solid state sintering; model and application, J. Eur. Ceram. Soc., 24, 345 – 61, (2004), DOI: 10.1016/S0955 – 2219(03)00222-X.

25   Reiterer, M., Kraft, T., Riedel, H.: Manufacturing of a gear wheel made from reaction bonded alumina—numerical simulation of the sinterforming process, J. Eur. Ceram. Soc., 24, 239 – 246, (2004), DOI: 10.1016/S0955 – 2219(03)00240 – 1.

26   van Nguyen, C., Sistla, S.K., van Kempen, S., Giang, N.A., Bezold, A., et al.: A comparative study of different sintering models for Al2O3, J. Ceram. Soc. Japan, 124, 301 – 312, (2016), DOI: 10.2109/jcersj2.15257.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH