Articles
All articles | Recent articles
Effect of the Evolution of Rheological Behavior over Deagglomeration Time on Optical Transparency of Polycrystalline Alumina Ceramics
A. Rahimian1, M. Torki2, S. Ghazanfari1, B. Movahedi2, R. Emadi1
1 Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156 – 83111, Iran
2 Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746 – 73441, Iran
received June 23, 2019, received in revised form August 6, 2019, accepted August 15, 2019
Vol. 10, No. 2, Pages 1-8 DOI: 10.4416/JCST2019-00047
Abstract
In this study, polycrystalline alumina ceramics were fabricated using slip casting and spark plasma sintering (SPS) methods. After being slip-cast, the samples were sintered at 1 350 and 1 450 °C for 20 min. The effect of the ball-milling time on the rheological behavior of alumina suspensions with different solid loads (65, 70 and 75 wt%) as well as on the ceramic densification process, microstructural evolution and optical transparency was investigated. It was demonstrated that the optimum ball-milling time to obtain rheological behavior suitable for slip casting was 6 h. Those samples prepared in order to demonstrate optimum rheological behavior and sintered at the optimum temperature were transparent. The highest real in-line transmittance (52 % at a wavelength of 640 nm) was determined for those samples ball-milled for 6 h, with 70 wt% solid load and sintered in the SPS process at 1 450 °C.
Download Full Article (PDF)
Keywords
Optical materials, sintering, optical properties, ball milling.
References
1 Krell, A., Klimke, J., Hutzler, T.: Advanced spinel and sub-μm Al2O3 for transparent armour applications, J. Eur. Ceram. Soc., 29, 275 – 281, (2009).
2 Krell, A., Hutzler, T., Klimke, J.: Transmission physics and consequences for materials selection, manufacturing, and applications, J. Eur. Ceram. Soc., 29, 207 – 221, (2009).
3 Tallon, C., Limacher, M., Franks, G.V. Effect of particle size on the shaping of ceramics by slip casting, J. Eur. Ceram. Soc., 30, 2819 – 2826, (2010).
4 Kafili, G., Loghman-Estarki, M.R., Milani, M., Movahedi, B. The effects of TEOS on the microstructure and phase evolutions of YAG phase by formation of alumina/yttria core-shell structures, J. Am. Ceram. Soc., 100, 4305 – 4316, (2017).
5 Dhara, S., Bhargava, P.: Influence of Slurry Characteristics on Porosity and Mechanical Properties of Alumina Foams, Int. J. Appl. Ceram. Technol., 3, 382 – 392, (2006).
6 Sokol, M., Kalabukhov, S., Kasiyan, V., Rothman, A., Dariel, M.P., Frage, N.: Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG, Opt. Mater., 38, 204 – 210, (2014).
7 He, M., Wang, Y., Forssberg, E.: Slurry rheology in wet ultrafine grinding of industrial minerals: A review, Powder technol., 147, 94 – 112, (2004).
8 Stuer, M., Bowen, P.: Yield stress modelling of doped alumina suspensions for applications in freeze granulation: towards dry pressed transparent ceramics, Adv. Appl. Ceram., 111, 254 – 261, (2012).
9 Krell, A., Klimke, J.: Effects of the homogeneity of particle coordination on solid state sintering of transparent alumina, J. Am. Ceram. Soc., 89, 1985 – 1992, (2006).
10 Thiele, E.S., Setter, N.: Lead zirconate titanate particle dispersion in thick- film ink formulations, J. Am. Ceram. Soc., 83, 1407 – 1412, (2000).
11 Farrokhpay, S.: The importance of rheology in mineral flotation: A review, Miner. Eng., 36, 272 – 278, (2012).
12 Rahaman, M.N.: Ceramic processing. Wiley Online Library, 2006.
13 Klement, R., Rols, S., Mikulikova, R., Krestan, J.: Transparent armour materials, J. Eur. Ceram. Soc., 29, 275 – 281, (2009).
14 Takao, Y., Hotta, T., Naito, M., Shinohara, N., Okumiya, M., Uematsu, K.: Microstructure of alumina compact body made by slip casting, J. Eur. Ceram. Soc., 22, 397 – 401, (2002).
15 Apetz, R., van Bruggen, M.P.B.: Transparent Alumina: A light-scattering model, J. Am. Ceram. Soc., 86, 480 – 486, (2003).
16 Eftekhari, A., Movahedi, B., Dini, G., Milani, M.: Fabrication and microstructural characterization of the novel optical ceramic consisting of α-Al2O3@ amorphous alumina nanocomposite core/shell structure, J. Eur. Ceram. Soc., 38, 3297 – 3304, (2018).
17 Lallemant, L., Fantozzi, G., Garnier, V., Bonnefont, G.: Transparent polycrystalline alumina obtained by SPS: green bodies processing effect, J. Eur. Ceram. Soc., 32, 2909 – 2915, (2012).
18 Kafili, G., Movahedi, B., Milani, M.: A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants, Mater. Chem. Phys., 183, 136 – 144, (2016).
19 Jiang, D.T., Hulbert, D.M., Anselmi-Tamburini, U., Ng, T., Land, D., Mukherjee A.K.: Optically transparent polycrystalline Al2O3 produced by spark plasma sintering, J. Am. Ceram. Soc., 91, 151 – 154, (2008).
20 Kim, B.-N., Hiraga, K., Morita, K., Yoshida, H.: Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina, J. Eur. Ceram. Soc., 29, 323 – 327, (2009).
21 Kim, B-N., Hiraga, K., Morita. K., Yoshida, H., Miyazaki, T., Kagawa, Y.: Microstructure and optical properties of transparent alumina, Acta Mater., 57, 1319 – 1326, (2009).
22 Mohammadi, F., Mirzaee, O., Tajally, M.: Influence of solid loading on the rheological, porosity distribution, optical and the microstructural properties of YAG transparent ceramic, Ceram. Int., 44, 12098 – 12105, (2018).
23 Stenger, F., Peukert, W.: The role of particle interactions on suspension rheology-application to submicron grinding in stirred ball mills, Chem. Eng. Technol., 26, 177 – 183, (2003).
24 Shafeiey, A., Enayati, M.H., Al-Haji, A.: The effect of slip casting parameters on the green density of MgAl2O4 spinel, Ceram. Int., 43, 6069 – 6074, (2017).
25 Bowen, P., Carry, C., Luxembourg, D., Hofmann, H.: Colloidical proccessing and sintering of nonosized transition aluminas, Powder Technol., 157, 100 – 107, (2005).
26 Liu, J., Lin, L., Li, J., Liu, J., Yuan, Y., Ivanov, M., Chen, M., Liu, B., Ge, L., Xie, T.: Effects of ball milling time on microstructure evolution and optical transparency of Nd: YAG ceramics, Ceram. Int., 40, 9841 – 9851, (2014).
27 Lange, F.F., Yul. B.C.: Shape forming alumina slurries via colloidal isopressing, J. Eur. Ceram. Soc., 30, 2795 – 2803, (2010).
28 Xue, L.A., Chen, I.: Deformation and grain growth of low temperature sintered high purity alumina, J. Am. Ceram. Soc., 73, 3518 – 3521, (1990).
29 Li, J., Ye, Y.: Densification and grain growth of Al2O3 nanoceramics during pressureless sintering, J. Am. Ceram. Soc., 89, 139 – 143, (2006).
30 Galusek, D., Sedláček, J., Chovanec, J., Michálková, M.: The influence of MgO, Y2O3 and ZrO2 additions on densification and grain growth of submicrometre alumina sintered by SPS and HIP, Ceram. Int., 41, 9692 – 9700, (2015).
31 Queiroga, J.A., Nunes, E.H.M., Souza, D.F., Vasconcelos, D.C.L., Ciminelli, V.S.T., Vasconcelos, W.L.: Microstructural investigation and performance evaluation of slip-cast alumina supports, Ceram. Int., 43, 3824 – 3830, (2017).
32 Yang, J., Oliveira, F.J., Ferreira, J.M.F.: Pressureless sintering of slip cast silicon nitride bodies prepared from coprecipitation coated powders, J. Eur. Ceram. Soc., 19, 433 – 439, (1999).
Copyright
Göller Verlag GmbH