Articles
All articles | Recent articles
Preparation of ultra-stable foams stabilized by large-size platelet particles via direct foaming method
W. Huo1, X. Zhang1, B. Ren1, J. Liu1, D. Wang2, J. Yang1
1 State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
2 Institute of technical information for building materials industry, Beijing 100024, P. R. China
received September 11, 2018, received in revised form January 31, 2019, accepted February 18, 2019
Vol. 10, No. 1, Pages 39-44 DOI: 10.4416/JCST2018-00073
Abstract
Stable colloidal foams that are usually stabilized by 0.02 – 5 μm particles have attracted increasing interests due to their outstanding stability. However, there were no studies on stable foams stabilized by large platelet particles so far. In this paper, we reported the study and successful preparation of ultra-stable foams using platelet particles with large particle size of dozens of microns for the first time, which subverts the conventional wisdom about particle-stabilized foams. Herein, intact platelet diatomite particles with diameter in the range of 10 – 50 μm was employed as starting material to prepare foams via mechanical frothing. The ultra-stability of foamed diatomite suspension was established by the well-ordered arrangement of whole lamellate diatomite particles at bubble interfaces in a very wide pH range of 4.0 – 12.0, using cetyltrimethyl ammonium bromide (CTAB) as surfactant. The obtained diatomite ceramic foams exhibited light weight and uniform macropores, and possessed four kinds of multilevel pores, which have potential applications in the fields of removal of fine particulate matter and treatment of waste gas and waste water.
Download Full Article (PDF)
Keywords
Stable foams, intact diatomite, platelet particles, particle size, multilevel pores
References
1 Ohji, T., Fukushima, M.: Macro-porous ceramics: processing and properties, Int. Mate. Rev., 57, 115 – 131, (2012).
2 Scheffler, M., Colombo, P.: Cellular ceramics: structure, manufacturing, properties and applications, John Wiley & Sons, (2006).
3 Twigg, M. V., Richardson, J. T.: Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res., 46, 4166 – 4177, (2007).
4 Colombo, P.: Conventional and novel processing methods for cellular ceramics, Philoso. T. R. Soc. A. 364(1838), 109 – 124, (2006).
5 Studart, A. R., Gonzenbach, U. T., Tervoort, E., Gauckler, L. J.: Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., 89, 1771 – 1789, (2006).
6 Gonzenbach, U. T., Studart, A. R., Tervoort, E., Gauckler, L. J.: Tailoring the microstructure of particle-stabilized wet foams, Langmuir, 23, 1025 – 1032, (2007).
7 Gonzenbach, U. T., Studart, A. R., Tervoort, E., Gauckler, L. J.: Stabilization of foams with inorganic colloidal particles. Langmuir, 22, 10983 – 10988, (2006).
8 Huo, W. L., Qi, F., Zhang, X. Y., Ma, N., Gan, K., Qu, Y. N., Xu, J., Yang, J. L.: Ultralight alumina ceramic foams with single-grain wall using sodium dodecyl sulfate as long-chain surfactant, J. Eur. Ceram. Soc., 36, 4163 – 4170, (2016).
9 Huo, W. L., Zhang, X. Y., Chen, Y. G., Lu, Y. J., Liu, W. T., Xi, X. Q. Wang, Y. L., Xu, J., Yang, J. L.: Highly porous zirconia ceramic foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 99, 3512 – 3515, (2016).
10 Gonzenbach, U. T., Studart, A. R., Tervoort, E., Gauckler, L. J.: Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc., 90, 16 – 22, (2006).
11 Krauss Juillerat, F., Gonzenbach, U. T., Elser, P., Studart, A. R., Gauckler, L. J.: Microstructural control of self-setting particle-stabilized ceramic foams. J. Am. Ceram. Soc., 94, 77 – 83, (2011).
12 Abkarian, M., Subramaniam, A. B., Kim, S. H., Larsen, R. J., Yang, S. M., Stone, H. A.: Dissolution arrest and stability of particle-covered bubbles, Phys. Rev. Lett., 99, 188301, (2007).
13 Cervantes Martinez, A., Rio, E., Delon, G., Saint-Jalmes, A., Langevin, D., Binks, B. P.: On the origin of the remarkable stability of aqueous foams stabilized by nanoparticles: link with microscopic surface properties, Soft Matter, 4, 1531, (2008).
14 Xu, B., Li, Z.: Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage, Appl. Energy, 105, 229 – 237, (2013).
15 Rottman, J., Platt, L. C., Sierra-Alvarez, R., Shadman, F.: Removal of TiO2 nanoparticles by porous media: effect of filtration media and water chemistry, Chem. Eng. J., 217, 212 – 220, (2013).
16 Ha, J. H., Oh, E., Ahmad, R., Song, I. H.: A particle-stabilized diatomite foam with a bimodal pore structure. J. Ceram. Soc. Jpn., 121, 426 – 429, (2013).
17 Kaptay, G.: Interfacial criteria for stabilization of liquid foams by solid particles, Collo. Surf. A, 230(1 – 3), 67 – 80, (2003).
18 Wang, M., Du, H., Guo, A., Hao, R., Hou, Z.: Microstructure control in ceramic foams via mixed cationic/anionic surfactant, Mater. Lett., 88, 97 – 100, (2012).
19 Studart, A. R., Gonzenbach, U. T., Akartuna, I., Tervoort, E., Gauckler, L. J.: Materials from foams and emulsions stabilized by colloidal particles. J. Mater. Chem., 17, 3283 – 3289, (2007).
20 Ahmad, R., Ha, J. H., Song, I. H.: Effect of valeric acid on the agglomeration of zirconia particles and effects of the sintering temperature on the strut wall thickness of particle-stabilized foam. J. Eur. Ceram. Soc., 34, 1303 – 1310, (2014).
21 Gonzenbach, U. T., Studart, A. R., Tervoort, E., Gauckler, L. J.: Ultrastable particle-stabilized foams, Angew. Chem. Int. Ed., 45, 3526 – 3530, (2006).
Copyright
Göller Verlag GmbH