Articles
All articles | Recent articles
Low temperature synthesis of alpha alumina platelets and acicular mullite in MgO-Al2O3-SiO2 system
M. A. Zalapa-Garibay1,2, A. Arizmendi-Moraquecho2, S. Y. Reyes-López3
1 Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Partido Romero C.P. 32310.
2 Centro de Investigación de Materiales Avanzados, Alianza Norte 202. Parque de Investigación e Innovación Tecnológica, Alianza Norte, Apodaca, Nuevo León, México. C.P. 66600
3 Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih., México C.P. 32300.
received August 27, 2018, received in revised form Febuary 28, 2019, accepted March 15, 2019
Vol. 10, No. 1, Pages 9-18 DOI: 10.4416/JCST2018-00043
Abstract
The refractory materials are more reliable and less expensive, this research is based on materials like alumina and mullite because it offers a very high refractoriness. In the present study an acicular mullite and α-alumina platelets were synthesized by using a synthesis of chemicals related to raw materials SiO2 45 wt%-Al2O3 45 wt% – MgO 10 wt%. The α-alumina platelets and acicular mullite were obtained in a reduced processing time and temperature, compare to conventional methods, such as sol-gel method, microwave sintering, chemical synthesis, combustion synthesis and lip casting and sintered. The composition, thermal analysis and micro structure evolution were followed by X-ray diffraction, differential thermal analysis and scanning electron microscopy (SEM). The synthesis of chemicals method based on Pechini process was successfully to synthesize α-alumina platelets and acicular mullite. All the precursor powders used have an amorphous structure with submicron particle size. The effect of MgO in the formation of α-alumina platelets and acicular mullite at low temperature was found. The α-alumina platelets and acicular mullite was detected after heating at 800 °C and the dissolution α-alumina platelets for the formation of secondary mullite is around 1000 °C. It was observed that at 1400 °C it's crystallized type III of secondary mullite. The behavior of the evolution of the phases and compact solid samples from oxides was made.
Download Full Article (PDF)
Keywords
Mullite, alumina, microstructure.
References
1 Stolyarova, V. L., Lopatin, S. I., Fabrichnaya, O. B.: Thermodynamic Properties of silicate glasses and melts: VIII. System MgO-Al2O3-SiO2, Russian J. Gen. Chem., 81, 2051 – 2061, (2011).
2 Reyes-López, S. Y., Rodríguez-Serrato, J., Sugita-Sueyoshi, S.: Microstructural characterization of sanitaryware, the relationship spinel and Mullite, J. Ceram. Proc. Res., 14, 492 – 497, (2013).
3 Reyes-López, S. Y., Rodríguez-Serrato, J.: Microstructural characterization of sanitaryware by infrared and Raman spectroscopy, the role of vitreous matrix on propierties, J. Ceram. Proc. R., 16, 162 – 168, (2015).
4 Reyes-López, S. Y., Rodríguez-Serrato, J., Sugita-Sueyoshi, S.: Low-temperature formation of alpha alumina powders via metal organic synthesis. AZo J. of Mat., 2, 1 – 9, (2006).
5 Reyes-López, S. Y., Saucedo-Acuña, R., López-Juárez, R. & Rodríguez-Serrato, J.: Analysis of the phase transformation of aluminum formate Al(O2CH)3 to α-alumina by Raman and infrared spectroscopy, J. Ceram. Proc. R., 14, 627 – 631, (2013).
6 Hernández, M. T. & González, M.: Synthesis of resins as alpha-alumina precursors by the Pechini method using microwave and infrared heating, J. E. Ceram. Soc., 22, 2861 – 2868, (2002).
7 Su, X., Li, J.: Low temperature synthesis of single-crystal alpha alumina platelets by calcining bayerite and potassium sulfate, J. Mater.s Sci. Tech., 27, 1011 – 1015, (2011).
8 Hill, R.F., Danzer, R., Paine, R.T.: Synthesis of aluminium oxide platelets, J. Am. Ceram. Soc., 84, 514 (2001).
9 Miao, X., Sorrell, C.C.: Alumina Platelets from Topaz-zirconia Mixtures. J. Mater. Sci. Lett., 17, 2087, (1998).
10 Hashimoto, S., Yamaguchi, A.: Synthesis of α-Al2O3 platelets using sodium sulfate flux, J. Mater. Res., 14, 4667, (1999).
11 Park, H.C., Kim, S.W., Lee, S.G., Kim, J.K., Hong, S.S., Lee, G.D., Park S.S.: Synthesis of α-alumina platelets using flux method in 2.45 GHz microwave field, Mater. Sci. Eng. A, 363, 330 – 334, (2003).
12 Wu, Y., Choy, K.L., Hench, L.L.: Preparation of α-Alumina Platelets by Laser Scanning, J. Am. Ceram. Soc., 87, 1606 – 1608, (2004).
13 Wei, M., Zhi, D., Choy, K.L.: Novel synthesis of α-alumina hexagonal nanoplatelets using electrostatic spray assisted chemical vapour deposition, Nanotechnology, 17, 181 – 184, (2006).
14 Galassi, C., Roncari, E., Bassarello, C., Lapasin, R.: Influence of Magnesia Addition on the Rheological Properties of Mullite Suspensions, J. Am.Ceram. Soc., 82, 3453 – 3458, (1999).
15 Amutharani, D., Gnanam, F. D.: Low temperature pressureless sintering of sol-gel derived Mullite, Mater. Sci. Eng. A, 264A, 254 – 261, (1999).
16 Chaudhuri, S. P., Partra, S. K.: Preparation and Characterization of Transition Metal Ion Doped Mullite, Trans. Br. Ceram. Soc., 96, 105 – 111, (1997).
17 Somiya, S., Yoshimura, M., Suzuki, M., Yanaguchi, T.: Ceramic transaction: Mullite and mullite matrix composites, Am. Ceram. Soc., 6, 287 – 317, (1990).
18 Gopi Chandran, R., Chandrashekar, B. K., Ganguly, C., Patil, K. C.: Sintering and microstructural investigations on combustion processed Mullite, J. Eur. Ceram. Soc., 16, 843 – 849, (1996).
19 Hirata, Y., Aksay, I. A., Hori, S., Kaji, H.: Ceramic transaction: Mullite and mullite matrix composites, Am. Ceram. Soc., 6, 287 – 317; (1990).
20 Lee, W. E., Rainforth, W. M.: Ceramic microstructures: Property control by processing, 1, 299 – 311, (1994).
21 Viswabaskaran, V., Gnanam, F. D., Balasubramanian, M.: Mullitisation Behaviour of Calcined Clay-Alumina Mixtures, Ceram. Int., 29, 561 – 571, (2003).
22 Sainz, M. A., Serrano, F. J., Bastida, J., Caballero, A.: Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite, J. Eur. Ceram. Soc., 17, 1277 – 1284, (1997).
23 Ismail, M. G. M. U., Tsunatori, H., Nakai, Z.: Preparation of MgO-doped mullite by sol-gel method, powder characteristics and sintering, J. Mater. Sci., 25, 2619 – 2625, (1990).
24 Shin, H., Kim, C., Chang, S.: Mullitization from a multicomponent oxide system in the temperature range 1200 – 1500 °C, J. Am. Ceram. Soc., 83, 1237 – 40, (2000).
25 Viswabaskaran, V., Gnanam, D., Balasubramanian, M.: Mullite from clay-reactive alumina for insulating substrate application, Appl. Clay Sci., 25, 29 – 35, (2004).
26 Doni, D., Amutha, D., Benny, D., Ma, J., Ohji, T.: Pulse electric current sintering and microstructure of industrial mullite in the presence of sintering aids, Ceram. Int., 30, 539 – 543, (2004).
27 Sacks, M. D., Lee, H., Pask, J. A.: Ceramic transaction: Mullite and mullite composites, Am. Ceram. Soc., 6, 167 – 208, (1990).
28 Viswabaskaran, V., Gnanam, F. D., Balasubramanian, M.: Effect of MgO, Y2O3 and boehmite additives on the sintering behavior of mullite formed from kaolinite-reactive alumina, J. Mater. Process. Technol., 142, 275 – 281, (2003).
29 Cesário, M. R., Macedo, M. A., Oliveira, R. M. P. B., Pimentel, P. M., Moreira, R. L., Meloa, D. M. A., The synthesis, thermal stability, crystal structure and spectroscopic study of La0.80Sr0.20MnO3 powder obtained by the modified Pechini's method, J. Ceram. Process. Res., 12, 102 – 105 (2011).
30 Chakraborthy, A. K., Ghosh, D. K.: Reexamination of the Kaolinite-to-Mullite Reaction Series, J. Am. Ceram. Soc., 61, 170 – 173, (1978).
31 Rezaie, H. R., Rainforth, W. M., Lee, W. E.: Mullite evolution in ceramics derived from kaolinite, kaolinite with added α-alumina, and sol – gel precursors. Trans. Br. Ceram. Soc., 96, 181 – 187, (1997).
32 Viswabaskaran, V., Gnanam, F. D., Balasubramanian, M.: Mullitisation behavior of South Indian Clay, Ceram. Int., 28, 557 – 564, (2002).
33 Montanaro, L., Perrot, C., Esnouf, C., Thollet, G., Fantozzi, G., Negro, A.: Sintering of Industrial Mullites in the Presence of Magnesia as a Sintering Aid, J. Am. Ceram. Soc., 83, 189 – 196, (2000).
34 Amutha Rani, D., Doni Jayaseelan D., Gnanam, F. D.: Densification behavior and microstructure of gel-derived phase-pure, Mullite in the presence of sinter additives, J. Europ. Ceram. Soc., 21, 2253 – 2257, (2001).
35 Hong, S.H., Cermignani, W., Messing, G. L.: Anisotropic grain growth in seeded and B2O3-doped diphasic Mullite gels, J. Europ. Ceram. Soc., 16, 133 – 141, (1996).
36 Hong, S.H., Messing, G. L.: Anisotropic grain growth in dysphasic-gel-derived titania-doped Mullite, J. Am. Ceram. Soc., 81, 1269 – 1277, (1998).
37 Mechnich, P., Schmucker, M., Schneider, H.: Reaction sequence and microstructural development of CeO2-doped reaction-bonded Mullite, J. Am. Ceram. Soc., 82, 2517 – 2522, (1999).
38 Roque-Ruiz, J. H., Cabrera-Ontiveros, E. A., González-García, G., Reyes-López, S. Y.: Thermal degradation of aluminum formate sol-gel; synthesis of α-alumina and characterization by 1H, 13C and 27Al MAS NMR and XRD spectroscopy. Results in physics, 6, 1096 – 1102, (2016).
39 Roque-Ruiz, J. H., Reyes-López, S. Y.: Synthesis of α-Al2O3 nanopowders at low temperature from aluminum formate by combustion process. J Material Sci Eng 2016, 6, 305; DOI: 10.4172/2169-0022.1000305.
40 Xiao, Z., Brian, S.: Mullite Decomposition Kinetics and Melt Stabilization in the Temperature Range 1900 – 2000 °C, J. Am. Ceram. Soc., 83, 761 – 767, (2000).
41 Davis, R. F., Aksay, I. A., Pask, J. A.: Decomposition of Mullite, J. Am.Ceram. Soc., 55, 98 – 101 (1972).
42 Liu, K. C., Thomas, G.: Mullitisation behaviour of calcined clay-alumina mixtures J. Am. Ceram. Soc., 77, 545 – 552, (1994).
43 Ribero, D., Restrepo, R., Paucar, C., García, C.: Highly refractory mullite obtained through the route of hydroxyhydrogels, J. Mat. Proc. Tech., 209, 986 – 990, (2009).
44 Sathyaseelan, B., Baskaran, I., Sivakumar, K.: Phase Transition Behavior of Nanocrystalline Al2O3 Powders, S. Nanoscience L., 3, 69 – 74, (2013).
45 Roy, D., Bagchi, B., Bhattacharya, A., Das, S., Nandy, P.: Microwave sintering of mullite-cordierite precursors prepared from solution combustion synthesis, Int. J. Appl. Ceram. Technol., 11, 1054 – 1060, (2014).
46 Nikzada, L., Ghofrani, S., Majidian, H., Ebadzadeh, T.: Microwave sintering of mullite-cordierite precursors prepared from solution combustion synthesis, Ceram. Int. 41, 9392–9398, (2015).
Copyright
Göller Verlag GmbH