• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Low temperature synthesis of alpha alumina platelets and acicular mullite in MgO-Al2O3-SiO2 system

M. A. Zalapa-Garibay1,2, A. Arizmendi-Moraquecho2, S. Y. Reyes-López3

1 Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Partido Romero C.P. 32310.
2 Centro de Investigación de Materiales Avanzados, Alianza Norte 202. Parque de Investigación e Innovación Tecnológica, Alianza Norte, Apodaca, Nuevo León, México. C.P. 66600
3 Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih., México C.P. 32300.

received August 27, 2018, received in revised form Febuary 28, 2019, accepted March 15, 2019

Vol. 10, No. 1, Pages 9-18   DOI: 10.4416/JCST2018-00043

Abstract

The refractory materials are more reliable and less expensive, this research is based on materials like alumina and mullite because it offers a very high refractoriness. In the present study an acicular mullite and α-alumina platelets were synthesized by using a synthesis of chemicals related to raw materials SiO2 45 wt%-Al2O3 45 wt% – MgO 10 wt%. The α-alumina platelets and acicular mullite were obtained in a reduced processing time and temperature, compare to conventional methods, such as sol-gel method, microwave sintering, chemical synthesis, combustion synthesis and lip casting and sintered. The composition, thermal analysis and micro structure evolution were followed by X-ray diffraction, differential thermal analysis and scanning electron microscopy (SEM). The synthesis of chemicals method based on Pechini process was successfully to synthesize α-alumina platelets and acicular mullite. All the precursor powders used have an amorphous structure with submicron particle size. The effect of MgO in the formation of α-alumina platelets and acicular mullite at low temperature was found. The α-alumina platelets and acicular mullite was detected after heating at 800 °C and the dissolution α-alumina platelets for the formation of secondary mullite is around 1000 °C. It was observed that at 1400 °C it's crystallized type III of secondary mullite. The behavior of the evolution of the phases and compact solid samples from oxides was made.

Download Full Article (PDF)

Keywords

Mullite, alumina, microstructure.

References

1 Stolyarova, V. L., Lopatin, S. I., Fabrichnaya, O. B.: Thermodynamic Properties of silicate glasses and melts: VIII. System MgO-Al2O3-SiO2, Russian J. Gen. Chem., 81, 2051 – 2061, (2011).

2 Reyes-López, S. Y., Rodríguez-Serrato, J., Sugita-Sueyoshi, S.: Microstructural characterization of sanitaryware, the relationship spinel and Mullite, J. Ceram. Proc. Res., 14, 492 – 497, (2013).

3 Reyes-López, S. Y., Rodríguez-Serrato, J.: Microstructural characterization of sanitaryware by infrared and Raman spectroscopy, the role of vitreous matrix on propierties, J. Ceram. Proc. R., 16, 162 – 168, (2015).

4 Reyes-López, S. Y., Rodríguez-Serrato, J., Sugita-Sueyoshi, S.: Low-temperature formation of alpha alumina powders via metal organic synthesis. AZo J. of Mat., 2, 1 – 9, (2006).

5 Reyes-López, S. Y., Saucedo-Acuña, R., López-Juárez, R. & Rodríguez-Serrato, J.: Analysis of the phase transformation of aluminum formate Al(O2CH)3 to α-alumina by Raman and infrared spectroscopy, J. Ceram. Proc. R., 14, 627 – 631, (2013).

6 Hernández, M. T. & González, M.: Synthesis of resins as alpha-alumina precursors by the Pechini method using microwave and infrared heating, J. E. Ceram. Soc., 22, 2861 – 2868, (2002).

7 Su, X., Li, J.: Low temperature synthesis of single-crystal alpha alumina platelets by calcining bayerite and potassium sulfate, J. Mater.s Sci. Tech., 27, 1011 – 1015, (2011).

8 Hill, R.F., Danzer, R., Paine, R.T.: Synthesis of aluminium oxide platelets, J. Am. Ceram. Soc., 84, 514 (2001).

9 Miao, X., Sorrell, C.C.: Alumina Platelets from Topaz-zirconia Mixtures. J. Mater. Sci. Lett., 17, 2087, (1998).

10 Hashimoto, S., Yamaguchi, A.: Synthesis of α-Al2O3 platelets using sodium sulfate flux, J. Mater. Res., 14, 4667, (1999).

11 Park, H.C., Kim, S.W., Lee, S.G., Kim, J.K., Hong, S.S., Lee, G.D., Park S.S.: Synthesis of α-alumina platelets using flux method in 2.45 GHz microwave field, Mater. Sci. Eng. A, 363, 330 – 334, (2003).

12 Wu, Y., Choy, K.L., Hench, L.L.: Preparation of α-Alumina Platelets by Laser Scanning, J. Am. Ceram. Soc., 87, 1606 – 1608, (2004).

13 Wei, M., Zhi, D., Choy, K.L.: Novel synthesis of α-alumina hexagonal nanoplatelets using electrostatic spray assisted chemical vapour deposition, Nanotechnology, 17, 181 – 184, (2006).

14 Galassi, C., Roncari, E., Bassarello, C., Lapasin, R.: Influence of Magnesia Addition on the Rheological Properties of Mullite Suspensions, J. Am.Ceram. Soc., 82, 3453 – 3458, (1999).

15 Amutharani, D., Gnanam, F. D.: Low temperature pressureless sintering of sol-gel derived Mullite, Mater. Sci. Eng. A, 264A, 254 – 261, (1999).

16 Chaudhuri, S. P., Partra, S. K.: Preparation and Characterization of Transition Metal Ion Doped Mullite, Trans. Br. Ceram. Soc., 96, 105 – 111, (1997).

17 Somiya, S., Yoshimura, M., Suzuki, M., Yanaguchi, T.: Ceramic transaction: Mullite and mullite matrix composites, Am. Ceram. Soc., 6, 287 – 317, (1990).

18 Gopi Chandran, R., Chandrashekar, B. K., Ganguly, C., Patil, K. C.: Sintering and microstructural investigations on combustion processed Mullite, J. Eur. Ceram. Soc., 16, 843 – 849, (1996).

19 Hirata, Y., Aksay, I. A., Hori, S., Kaji, H.: Ceramic transaction: Mullite and mullite matrix composites, Am. Ceram. Soc., 6, 287 – 317; (1990).

20 Lee, W. E., Rainforth, W. M.: Ceramic microstructures: Property control by processing, 1, 299 – 311, (1994).

21 Viswabaskaran, V., Gnanam, F. D., Balasubramanian, M.: Mullitisation Behaviour of Calcined Clay-Alumina Mixtures, Ceram. Int., 29, 561 – 571, (2003).

22 Sainz, M. A., Serrano, F. J., Bastida, J., Caballero, A.: Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite, J. Eur. Ceram. Soc., 17, 1277 – 1284, (1997).

23 Ismail, M. G. M. U., Tsunatori, H., Nakai, Z.: Preparation of MgO-doped mullite by sol-gel method, powder characteristics and sintering, J. Mater. Sci., 25, 2619 – 2625, (1990).

24 Shin, H., Kim, C., Chang, S.: Mullitization from a multicomponent oxide system in the temperature range 1200 – 1500 °C, J. Am. Ceram. Soc., 83, 1237 – 40, (2000).

25 Viswabaskaran, V., Gnanam, D., Balasubramanian, M.: Mullite from clay-reactive alumina for insulating substrate application, Appl. Clay Sci., 25, 29 – 35, (2004).

26 Doni, D., Amutha, D., Benny, D., Ma, J., Ohji, T.: Pulse electric current sintering and microstructure of industrial mullite in the presence of sintering aids, Ceram. Int., 30, 539 – 543, (2004).

27 Sacks, M. D., Lee, H., Pask, J. A.: Ceramic transaction: Mullite and mullite composites, Am. Ceram. Soc., 6, 167 – 208, (1990).

28 Viswabaskaran, V., Gnanam, F. D., Balasubramanian, M.: Effect of MgO, Y2O3 and boehmite additives on the sintering behavior of mullite formed from kaolinite-reactive alumina, J. Mater. Process. Technol., 142, 275 – 281, (2003).

29 Cesário, M. R., Macedo, M. A., Oliveira, R. M. P. B., Pimentel, P. M., Moreira, R. L., Meloa, D. M. A., The synthesis, thermal stability, crystal structure and spectroscopic study of La0.80Sr0.20MnO3 powder obtained by the modified Pechini's method, J. Ceram. Process. Res., 12, 102 – 105 (2011).

30 Chakraborthy, A. K., Ghosh, D. K.: Reexamination of the Kaolinite-to-Mullite Reaction Series, J. Am. Ceram. Soc., 61, 170 – 173, (1978).

31 Rezaie, H. R., Rainforth, W. M., Lee, W. E.: Mullite evolution in ceramics derived from kaolinite, kaolinite with added α-alumina, and sol – gel precursors. Trans. Br. Ceram. Soc., 96, 181 – 187, (1997).

32 Viswabaskaran, V., Gnanam, F. D., Balasubramanian, M.: Mullitisation behavior of South Indian Clay, Ceram. Int., 28, 557 – 564, (2002).

33 Montanaro, L., Perrot, C., Esnouf, C., Thollet, G., Fantozzi, G., Negro, A.: Sintering of Industrial Mullites in the Presence of Magnesia as a Sintering Aid, J. Am. Ceram. Soc., 83, 189 – 196, (2000).

34 Amutha Rani, D., Doni Jayaseelan D., Gnanam, F. D.: Densification behavior and microstructure of gel-derived phase-pure, Mullite in the presence of sinter additives, J. Europ. Ceram. Soc., 21, 2253 – 2257, (2001).

35 Hong, S.H., Cermignani, W., Messing, G. L.: Anisotropic grain growth in seeded and B2O3-doped diphasic Mullite gels, J. Europ. Ceram. Soc., 16, 133 – 141, (1996).

36 Hong, S.H., Messing, G. L.: Anisotropic grain growth in dysphasic-gel-derived titania-doped Mullite, J. Am. Ceram. Soc., 81, 1269 – 1277, (1998).

37 Mechnich, P., Schmucker, M., Schneider, H.: Reaction sequence and microstructural development of CeO2-doped reaction-bonded Mullite, J. Am. Ceram. Soc., 82, 2517 – 2522, (1999).

38 Roque-Ruiz, J. H., Cabrera-Ontiveros, E. A., González-García, G., Reyes-López, S. Y.: Thermal degradation of aluminum formate sol-gel; synthesis of α-alumina and characterization by 1H, 13C and 27Al MAS NMR and XRD spectroscopy. Results in physics, 6, 1096 – 1102, (2016).

39 Roque-Ruiz, J. H., Reyes-López, S. Y.: Synthesis of α-Al2O3 nanopowders at low temperature from aluminum formate by combustion process. J Material Sci Eng 2016, 6, 305; DOI: 10.4172/2169-0022.1000305.

40 Xiao, Z., Brian, S.: Mullite Decomposition Kinetics and Melt Stabilization in the Temperature Range 1900 – 2000 °C, J. Am. Ceram. Soc., 83, 761 – 767, (2000).

41 Davis, R. F., Aksay, I. A., Pask, J. A.: Decomposition of Mullite, J. Am.Ceram. Soc., 55, 98 – 101 (1972).

42 Liu, K. C., Thomas, G.: Mullitisation behaviour of calcined clay-alumina mixtures J. Am. Ceram. Soc., 77, 545 – 552, (1994).

43 Ribero, D., Restrepo, R., Paucar, C., García, C.: Highly refractory mullite obtained through the route of hydroxyhydrogels, J. Mat. Proc. Tech., 209, 986 – 990, (2009).

44 Sathyaseelan, B., Baskaran, I., Sivakumar, K.: Phase Transition Behavior of Nanocrystalline Al2O3 Powders, S. Nanoscience L., 3, 69 – 74, (2013).

45 Roy, D., Bagchi, B., Bhattacharya, A., Das, S., Nandy, P.: Microwave sintering of mullite-cordierite precursors prepared from solution combustion synthesis, Int. J. Appl. Ceram. Technol., 11, 1054 – 1060, (2014).

46 Nikzada, L., Ghofrani, S., Majidian, H., Ebadzadeh, T.: Microwave sintering of mullite-cordierite precursors prepared from solution combustion synthesis, Ceram. Int. 41, 9392–9398, (2015).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH