• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Preparation of Si-C-O Ceramic Fibers from Commercial Silicon Resin

H. Li, Y. Gou, H. Wang, K. Jian

Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, Hunan, P. R. China, 410073

received May 31, 2018, received in revised form August 1, 2018, accepted August 2, 2018

Vol. 9, No. 4, Pages 427-434   DOI: 10.4416/JCST2018-00040

Abstract

Si-C-O ceramic fibers were prepared from commercial silicon resin by means of melt spinning, UV curing and pyrolysis. The composition and structure of the precursors were characterized with FT-IR and NMR. Silicon resin exhibited excellent spinning performance for use as a precursor to prepare continuous fibers. UV irradiation was employed to complete the cross-linking of the green fibers, and the mechanism of the curing process was determined with FT-IR. After pyrolysis at 1 000 °C, Si-C-O ceramic fibers were obtained, which exhibited good flexibility with 7.5 μm in diameter and 0.8 GPa in tensile strength. The obtained fibers remained amorphous below 1 300 °C. When the temperature reached above 1 300 °C, SiC with a small crystal size appeared because of carbothermal reduction, and the fiber gradually lost mechanical strength owing to the pores caused by release of low-molecular-weight molecules such as CO, CO2 and SiO.

Download Full Article (PDF)

Keywords

Si-C-O ceramic fibers, silicon resin, precursor, low cost, UV curing

References

1 Yajima, S., Hasegawa, Y., Okamura, K., Matsuzawa, T.: Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor, Nature, 273, 525 – 527, (1978).

2 Quemard, L., Rebillat, F., Guette, A., Tawil, H., Louchet-Pouillerie, C.: Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments, J. Eur. Ceram. Soc., 27, 2085 – 2094, (2007).

3 Ji, X., Wang, S., Shao, C., Wang, H.: High-temperature corrosion behavior of SiBCN fibers for aerospace applications, ACS Appl. Mater. Inter., 10, 19712 – 19720, (2018).

4 Lipowitz, J.: Structure and properties of ceramic fibers prepared from organosilicon polymers, J. Inorg. Organomet. P., 1, 277 – 297, (1991).

5 Colombo, P., Mera, G., Riedel, R., Soraru, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc., 93, 1805 – 1837, (2010).

6 Ji, X., Shao, C., Wang, H. et al.: A simple and efficient method for the synthesis of SiBNC ceramics with different Si/B atomic ratios, Ceram. Int., 43, 7469 – 7476, (2017).

7 Gou, Y., Wang, H., Jian, K.: Formation of carbon-rich layer on the surface of SiC fiber by sintering under vacuum for superior mechanical and thermal properties, J. Eur. Ceram. Soc., 37, 907 – 914, (2016).

8 Xie, Z., Gou, Y.: Polyaluminocarbosilane as precursor for aluminium-containing SiC fiber from oxygen-free sources, Ceram. Int., 42, 10439 – 10443, (2016).

9 Gou, Y., Wang, H., Jian, K., Song, Y., Wang, J.: The investigation of properties of SiC ceramic fibers with various composition and structure, Mater. Sci. Forum, 816, 163 – 165, (2015).

10 Mera, G., Riedel, R., Sen, S. et al.: Polymer-derived SiCN and SiOC ceramics-structure and energetics at the nanoscale, J. Mater. Chem. A., 1, 3826 – 3836, (2013).

11 Kroll, P.: Searching insight into the atomistic structure of SiCO ceramics, J. Mater. Chem., 20, 10528 – 10534, (2010).

12 Zhang, H., Pantano, C.G.: Synthesis and characterization of silicon oxycarbide glasses, J. Am. Ceram. Soc., 73, 958 – 963, (1990).

13 Soraru, G.D., Dallapiccola, E., Andrea, G.D.: Mechanical characterization of sol-gel-derived silicon oxycarbide glasses, J. Am. Ceram. Soc., 79, 2074 – 2080, (1996).

14 Kleebe, H.J., Truquat, C., Soraru, G.D.: Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy, J. Am. Ceram. Soc., 84, 1073 – 1080, (2001).

15 Bodet, R., Jia, N., Tressler, R.E.: Microstructural instability and the resultant strength of SiCO (Nicalon) and SiNCO (HPZ) fibres, J. Eur. Ceram. Soc., 16, 653 – 664, (1996).

16 Bunsell, A., Piant, A.: A review of the development of three generations of small diameter silicon carbide fibers, J. Mater. Sci., 41, 823 – 839, (2006).

17 Bujalski, D.R., Su, K., Zank, G.A.: Process of producing fibers from curable alk-1-enyl ether functional siloxane resins, U.S. Pat. No. 5,814,271.

18 Atwell, W.H., Bujalski, D.R., Joffre, E.J. et al.: Preparation of substantially polycrystalline silicon carbide fibers from polyorganosiloxanes, U.S. Pat. No. 5,167,881.

19 Rahimi, A., Shokrolahi, P.: Application of inorganic polymeric materials: polysiloxanes, J. Inorg. Mater., 3, 843 – 847, (2001).

20 Brus, J., Kolar, F., Machovic, V. et a1.: Structure of silicon oxycarbide glasses derived from poly(methylsiloxane) and poly[methyl(phenyl)siloxane]precursors, J. Non-Cryst. Solids, 289, 62 – 74, (2001).

21 Bujalski, D.R., Chen, H., Ronald, E. et al.: Compositional and structural analysis of a (PhSiO3/2)0.35(MeSiO3/2)0.40‌(Me2ViSiO1/2)0.25 resin, Macromolecules, 36, 180 – 197, (2003).

22 Bujalski, D.R., Chen, H., Zank, A. et al.: Synthesis of (PhSiO3/2)0.35(MeSiO3/2)0.40(Me2ViSiO1/2)0.25 resins, Macromolecules, 36, 3529 – 2539, (2003).

23 Hurwitz, F.I., Farmer, S.C., Terepka, F.M. et al.: Silsesquioxanes-derived ceramic fibers, J. Mater. Sci., 26, 1247 – 1252, (1991).

24 Narisawa, M., Satoh, Y., Sumimoto, R. et al.: Synthesis of SiOC base fibers from silicone resin with low carbon content and control of surface functionality by metal chloride treatment in vapor, Mater. Sci. Forum., 658, 400 – 403, (2010).

25 Kita, K., Narisawa, M., Mabuchi, H.: Melt spinnable blend polymers of polycarbosilane and polysiloxane for synthesis of silicon carbide micro tube structures, Key. Eng. Mater., 352, 69 – 72, (2007).

26 Kita, K., Narisawa, M., Mabuchi, H.: Formation of continuous pore structures in Si-C-O fibers by adjusting the melt spinning condition of a polycarbosilane-polysiloxane polymer blend, J. Am. Ceram. Soc., 92, 1192 – 1197, (2009).

27 Narisawa, M., Sumimoto, R., Kita, K. et al.: Investigation of curing process on melt spun polymethylsilsesquioxane fiber as precursor for silicon oxycarbide fibers, Adv. Mater. Res., 66, 1 – 4, (2009).

28 Narisawa, M., Sumimoto, R., Kita, K. et al.: Melt spinning and metal chloride vapor curing process on polymethylsilsesquioxane as Si-C-O fiber precursor, J. Appl. Polym. Sci., 114, 2600 – 2607, (2009).

29 Riedel, R.: Nanoscaled inorganic materials by molecular design, Chem. Soc. Rev., 41, 5029 – 5031, (2012).

30 Statheropoulos, M., Kyriakou, S., Tzamtzis, N.: Performance evaluation of a TG/MS system, Thermochim. Acta., 322, 167 – 173, (1998).

31 Ji, X., Shao, C., Wang, H., Cheng, J., Li, H.: Curing green fibres infusible by electron beam irradiation for the preparation of SiBNC ceramic fibres, Ceram. Int., 43, 11218 – 11224, (2017).

32 Li, H., Gou, Y., Chen, S., Wang, H.: Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics, J. Mater. Sci., 53, 10933 – 10945, (2018).

33 Cheng, J., Wang, X., Wang, H., Shao, C., Wang, J.: Preparation and high temperature behavior of HfC-SiC nanocomposites derived from a non-oxygen single-source-precursor, J. Am. Ceram. Soc., 100, 5044 – 5055, (2017).

34 Li, H., Gou, Y., Chen, S., Wang, H.: Preparation and properties of a novel precursor-derived Zr-C-B-N composite ceramic via zirconocene and borazine, Ceram. Int., 44, 4097 – 4104, (2018).

35 Narisawa, M., Sumimoto, R., Kita, K. et al.: Evaluation of oxidation resistance of thin continuous silicon oxycarbide fiber derived from silicone resin with low carbon content, J. Mater. Sci., 45, 5642 – 5648, (2010).

36 Burns, G.T., Taylor, R.B., Xu, Y. et al.: High-temperature chemistry of the conversion of siloxanes to silicon carbide, Chem. Mater., 4, 1313 – 1323, (1992).

37 Vix-Guterl, C., Alix, I., Ehrburger, P.: Synthesis of tubular silicon carbide (SiC) from a carbon-silica material by using a reactive replica technique: mechanism of formation of SiC, Acta. Mater., 52, 1639 – 1651, (2004).

38 Cheng, J., Wang, J., Wang, X., Wang, H.: Preparation and high-temperature performance of HfC-based nanocomposites derived from precursor with Hf-(O,N) bonds, Ceram. Int., 43, 7159 – 7165, (2017).

39 Gou, Y., Wang, H. Jian, K. et al.: Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres, J. Eur. Ceram. Soc., 37, 517 – 522, (2017).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH