Articles
All articles | Recent articles
Preparation of Si-C-O Ceramic Fibers from Commercial Silicon Resin
H. Li, Y. Gou, H. Wang, K. Jian
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, Hunan, P. R. China, 410073
received May 31, 2018, received in revised form August 1, 2018, accepted August 2, 2018
Vol. 9, No. 4, Pages 427-434 DOI: 10.4416/JCST2018-00040
Abstract
Si-C-O ceramic fibers were prepared from commercial silicon resin by means of melt spinning, UV curing and pyrolysis. The composition and structure of the precursors were characterized with FT-IR and NMR. Silicon resin exhibited excellent spinning performance for use as a precursor to prepare continuous fibers. UV irradiation was employed to complete the cross-linking of the green fibers, and the mechanism of the curing process was determined with FT-IR. After pyrolysis at 1 000 °C, Si-C-O ceramic fibers were obtained, which exhibited good flexibility with 7.5 μm in diameter and 0.8 GPa in tensile strength. The obtained fibers remained amorphous below 1 300 °C. When the temperature reached above 1 300 °C, SiC with a small crystal size appeared because of carbothermal reduction, and the fiber gradually lost mechanical strength owing to the pores caused by release of low-molecular-weight molecules such as CO, CO2 and SiO.
Download Full Article (PDF)
Keywords
Si-C-O ceramic fibers, silicon resin, precursor, low cost, UV curing
References
1 Yajima, S., Hasegawa, Y., Okamura, K., Matsuzawa, T.: Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor, Nature, 273, 525 – 527, (1978).
2 Quemard, L., Rebillat, F., Guette, A., Tawil, H., Louchet-Pouillerie, C.: Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments, J. Eur. Ceram. Soc., 27, 2085 – 2094, (2007).
3 Ji, X., Wang, S., Shao, C., Wang, H.: High-temperature corrosion behavior of SiBCN fibers for aerospace applications, ACS Appl. Mater. Inter., 10, 19712 – 19720, (2018).
4 Lipowitz, J.: Structure and properties of ceramic fibers prepared from organosilicon polymers, J. Inorg. Organomet. P., 1, 277 – 297, (1991).
5 Colombo, P., Mera, G., Riedel, R., Soraru, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc., 93, 1805 – 1837, (2010).
6 Ji, X., Shao, C., Wang, H. et al.: A simple and efficient method for the synthesis of SiBNC ceramics with different Si/B atomic ratios, Ceram. Int., 43, 7469 – 7476, (2017).
7 Gou, Y., Wang, H., Jian, K.: Formation of carbon-rich layer on the surface of SiC fiber by sintering under vacuum for superior mechanical and thermal properties, J. Eur. Ceram. Soc., 37, 907 – 914, (2016).
8 Xie, Z., Gou, Y.: Polyaluminocarbosilane as precursor for aluminium-containing SiC fiber from oxygen-free sources, Ceram. Int., 42, 10439 – 10443, (2016).
9 Gou, Y., Wang, H., Jian, K., Song, Y., Wang, J.: The investigation of properties of SiC ceramic fibers with various composition and structure, Mater. Sci. Forum, 816, 163 – 165, (2015).
10 Mera, G., Riedel, R., Sen, S. et al.: Polymer-derived SiCN and SiOC ceramics-structure and energetics at the nanoscale, J. Mater. Chem. A., 1, 3826 – 3836, (2013).
11 Kroll, P.: Searching insight into the atomistic structure of SiCO ceramics, J. Mater. Chem., 20, 10528 – 10534, (2010).
12 Zhang, H., Pantano, C.G.: Synthesis and characterization of silicon oxycarbide glasses, J. Am. Ceram. Soc., 73, 958 – 963, (1990).
13 Soraru, G.D., Dallapiccola, E., Andrea, G.D.: Mechanical characterization of sol-gel-derived silicon oxycarbide glasses, J. Am. Ceram. Soc., 79, 2074 – 2080, (1996).
14 Kleebe, H.J., Truquat, C., Soraru, G.D.: Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy, J. Am. Ceram. Soc., 84, 1073 – 1080, (2001).
15 Bodet, R., Jia, N., Tressler, R.E.: Microstructural instability and the resultant strength of SiCO (Nicalon) and SiNCO (HPZ) fibres, J. Eur. Ceram. Soc., 16, 653 – 664, (1996).
16 Bunsell, A., Piant, A.: A review of the development of three generations of small diameter silicon carbide fibers, J. Mater. Sci., 41, 823 – 839, (2006).
17 Bujalski, D.R., Su, K., Zank, G.A.: Process of producing fibers from curable alk-1-enyl ether functional siloxane resins, U.S. Pat. No. 5,814,271.
18 Atwell, W.H., Bujalski, D.R., Joffre, E.J. et al.: Preparation of substantially polycrystalline silicon carbide fibers from polyorganosiloxanes, U.S. Pat. No. 5,167,881.
19 Rahimi, A., Shokrolahi, P.: Application of inorganic polymeric materials: polysiloxanes, J. Inorg. Mater., 3, 843 – 847, (2001).
20 Brus, J., Kolar, F., Machovic, V. et a1.: Structure of silicon oxycarbide glasses derived from poly(methylsiloxane) and poly[methyl(phenyl)siloxane]precursors, J. Non-Cryst. Solids, 289, 62 – 74, (2001).
21 Bujalski, D.R., Chen, H., Ronald, E. et al.: Compositional and structural analysis of a (PhSiO3/2)0.35(MeSiO3/2)0.40(Me2ViSiO1/2)0.25 resin, Macromolecules, 36, 180 – 197, (2003).
22 Bujalski, D.R., Chen, H., Zank, A. et al.: Synthesis of (PhSiO3/2)0.35(MeSiO3/2)0.40(Me2ViSiO1/2)0.25 resins, Macromolecules, 36, 3529 – 2539, (2003).
23 Hurwitz, F.I., Farmer, S.C., Terepka, F.M. et al.: Silsesquioxanes-derived ceramic fibers, J. Mater. Sci., 26, 1247 – 1252, (1991).
24 Narisawa, M., Satoh, Y., Sumimoto, R. et al.: Synthesis of SiOC base fibers from silicone resin with low carbon content and control of surface functionality by metal chloride treatment in vapor, Mater. Sci. Forum., 658, 400 – 403, (2010).
25 Kita, K., Narisawa, M., Mabuchi, H.: Melt spinnable blend polymers of polycarbosilane and polysiloxane for synthesis of silicon carbide micro tube structures, Key. Eng. Mater., 352, 69 – 72, (2007).
26 Kita, K., Narisawa, M., Mabuchi, H.: Formation of continuous pore structures in Si-C-O fibers by adjusting the melt spinning condition of a polycarbosilane-polysiloxane polymer blend, J. Am. Ceram. Soc., 92, 1192 – 1197, (2009).
27 Narisawa, M., Sumimoto, R., Kita, K. et al.: Investigation of curing process on melt spun polymethylsilsesquioxane fiber as precursor for silicon oxycarbide fibers, Adv. Mater. Res., 66, 1 – 4, (2009).
28 Narisawa, M., Sumimoto, R., Kita, K. et al.: Melt spinning and metal chloride vapor curing process on polymethylsilsesquioxane as Si-C-O fiber precursor, J. Appl. Polym. Sci., 114, 2600 – 2607, (2009).
29 Riedel, R.: Nanoscaled inorganic materials by molecular design, Chem. Soc. Rev., 41, 5029 – 5031, (2012).
30 Statheropoulos, M., Kyriakou, S., Tzamtzis, N.: Performance evaluation of a TG/MS system, Thermochim. Acta., 322, 167 – 173, (1998).
31 Ji, X., Shao, C., Wang, H., Cheng, J., Li, H.: Curing green fibres infusible by electron beam irradiation for the preparation of SiBNC ceramic fibres, Ceram. Int., 43, 11218 – 11224, (2017).
32 Li, H., Gou, Y., Chen, S., Wang, H.: Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics, J. Mater. Sci., 53, 10933 – 10945, (2018).
33 Cheng, J., Wang, X., Wang, H., Shao, C., Wang, J.: Preparation and high temperature behavior of HfC-SiC nanocomposites derived from a non-oxygen single-source-precursor, J. Am. Ceram. Soc., 100, 5044 – 5055, (2017).
34 Li, H., Gou, Y., Chen, S., Wang, H.: Preparation and properties of a novel precursor-derived Zr-C-B-N composite ceramic via zirconocene and borazine, Ceram. Int., 44, 4097 – 4104, (2018).
35 Narisawa, M., Sumimoto, R., Kita, K. et al.: Evaluation of oxidation resistance of thin continuous silicon oxycarbide fiber derived from silicone resin with low carbon content, J. Mater. Sci., 45, 5642 – 5648, (2010).
36 Burns, G.T., Taylor, R.B., Xu, Y. et al.: High-temperature chemistry of the conversion of siloxanes to silicon carbide, Chem. Mater., 4, 1313 – 1323, (1992).
37 Vix-Guterl, C., Alix, I., Ehrburger, P.: Synthesis of tubular silicon carbide (SiC) from a carbon-silica material by using a reactive replica technique: mechanism of formation of SiC, Acta. Mater., 52, 1639 – 1651, (2004).
38 Cheng, J., Wang, J., Wang, X., Wang, H.: Preparation and high-temperature performance of HfC-based nanocomposites derived from precursor with Hf-(O,N) bonds, Ceram. Int., 43, 7159 – 7165, (2017).
39 Gou, Y., Wang, H. Jian, K. et al.: Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres, J. Eur. Ceram. Soc., 37, 517 – 522, (2017).
Copyright
Göller Verlag GmbH