Articles
All articles | Recent articles
Impact of Ba2+on Structure and Electrical Properties of 0.65PMN-0.35PT Ceramics
C. Lu1,2, Y. Liu1,2, C. Lyu1,2, F. Chen1,2, H. Xi1,2, Y. Lyu1,2,3
1 The State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
2 Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, China.
3 Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), China
received March 13, 2018, received in revised form April 24, 2018, accepted May 29, 2018
Vol. 9, No. 3, Pages 337-344 DOI: 10.4416/JCST2018-00023
Abstract
Ba-doped PMN-0.35PT (PMN-0.35PT-xBa) (x = 0 – 0.05) relaxor ferroelectric ceramics were prepared with a two-step columbite precursor method. The effect of using Ba2+ to modify the structure and electrical properties of PMN-0.35PT-xBa ceramics near the morphotropic phase boundary was investigated. The introduction of Ba dopant significantly improved the densification of the ceramics and the growth of the grain, but also profoundly modified the phase structure. The study demonstrated that the substitution of Ba main doping for A-site in the PMN-0.35PT lattice could affect electrical properties of PMN-0.35PT binary ceramics. Increasing the dosage of Ba led to enhancement of the ferroelectric response and remarkably increased the electrostrictive response. Results in this study indicated that at a composition x of 3.0 mol%, a large strain response could be obtained with maximum strain as high as 0.13 % under the low field of 15 kV/cm at room temperature. The maximum piezoelectric performance is found at x = 0.05 (d33 = 508pC/N).
Download Full Article (PDF)
Keywords
PMN-PT, strain, piezoelectric properties, morphotropic phase boundary, phase transition
References
1 Cross, L.E.: Relaxor ferroelectrics, Ferroelectrics, 76, 241 – 267, (1987).
2 Swartz, S.L., Shrout, T.R., Schulze, W.A., Cross, L.E.: Dielectric-properties of lead-magnesium niobate ceramics, J. Am. Ceram. Soc., 67, 311 – 315, (1984).
3 Shvartsman, V.V., Kholkin, A.L.: Domain structure of 0.8PbMg1/3Nb2/3O3-0.2PbTiO3 studied by piezoresponse force microscopy, Phys. Rev. B, 69, 014102, (2004)
4 Shrout, T.R., Schulze, W.A., Biggers, J.V.: Dielectric behavior of single crystals near the (1-x) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary, Ferroelectrics Lett., 12, 63 – 69, (1990).
5 Xi, Z., Hou, Z., Li, X., Fang, P., Long, W.: Study on structure and properties of Pb(Sc1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics near morphotropic phase boundary, Ceram. Int., 41, S787 – S791, (2015).
6 Chae, M.-S., Koh, J.-H.: Piezoelectric behavior of (1-x)(PbMgNbO3-PbZr TiO3)-x(BaTiO3)ceramics for energy harvester applications, Ceram. Int., 40, 2551 – 2555, (2014).
7 PhamThi, M., Augier, C., Dammak, H., Gaucher, P.: Fine grains ceramics of PIN-PT,PIN-PMN-PT and PMN-PT systems:drift of the dielectric constant under high electric field, Ultrasonics, 44, e627 – e631, (2006).
8 Hosono, Y., Yamashita, Y., Sakamoto, H., Ichinose, N.: Dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramic mterials near the morphotropic phase boundary, Jpn. J. Appl. Phys., 42, 535 – 538, (2003).
9 Noheda, B., Cox, D.E., Shirane, G., Gao, J., Ye, Z.G.: Phase diagram of the ferroelectric relaxor(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3, Phys. Rev. B, 66, 054104, (2002).
10 Jiang, T., Li, Q., Yan, Q., Luo, N., Zhang, Y., Chu, X.: Composition and temperature dependence of ferroelectric and pyroelectric properties of (1-x)[PMN-PT(65/35)]-xPZ (0≤x≤0.10)ceramics, Mater. Res. Bull., 59, 421 – 424, (2014).
11 Qi, X., Sun, E., Wang, J., Zhang, R., Yang, B., Cao, W.: Electromechanical properties of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics, Ceram. Int., 42, 15332 – 15337, (2016).
12 Nomura, S., Kaneta, K., Kuwata, J., Uchino, K.: Recent applications of PMN-based electrostrictors, Ferroelectrics, 50, 197 – 202, (1983).
13 Zhong, N., Xiang, P.-h., Sun, D.-z., Dong, X.-l.: Effect of rare earth additives on the microstructure and dielectric properties of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 ceramics, Mater. Sci. Eng. B, 116, 140 – 145, (2005).
14 Zhao, X., Qu, W., He, H., Vittayakorn, N., Tan, X.: Influence of cation order on the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics, J. Am. Ceram. Soc., 89, 202 – 209, (2006).
15 Ling, H.C., Yan, M.F., Rhodes, W.W.: Lead zinc niobate Pyrochlore: structure and dielectric properties, J. Mater. Sci., 24, 541 – 548, (1989).
16 Talanov, M.V., Shilkina, L.A., Verbenko, I.A., Reznichenko, L.A.: Impact of Ba2+ on structure and piezoelectric properties of PMN-PZN-PNN-PT ceramics near the morphotropic phase boundary, J. Am. Ceram. Soc., 98, 838 – 847, (2015).
17 Augustine, P., Samanta, S., Rath, M., et al.: Stabilization heat treatment and functional response of 0.65[Pb(Mg1/3Nb2/3)O3] -0.35[PbTiO3] ceramics, Mater. Res. Bull., 95, 47 – 55, (2017).
18 Shannon, R.D., Prewitt, C.T.: Effective ionic radii in oxides and fluorides, Acta Crystallogr. B, 25, 925 – 946, (1969).
19 Lee, K.-M., Jang, H.M.: A new mechanism of nonstoichiometric 1:1 short-range ordering in NiO-doped Pb(Mg1/3Nb2/3)O3 relaxor ferroelectrics, J. Am. Ceram. Soc., 81, 2586 – 2596, (1998).
20 Chen, G., Zhang, Y., Chu, X.-M., et al.: Large electrocaloric effect in La-doped 0.88Pb(Mg1/3Nb2/3)O3-0.12PbTiO3 relaxor ferroelectric ceramics, J. Alloy Compd., 727, 785 – 791, (2017).
21 Bruno, J.C., Cavalheiro, A.A., Zaghete, M.A., Cilense, M., Varela, J.A.: Structural effects of Li and K additives on the columbite precursor and 0.9PMN-0.1PT powders, Mater. Chem. Phys., 84, 120 – 125, (2004).
22 Bokov, A.A., Ye, Z.G.: Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci., 41, 31 – 52, (2006).
Copyright
Göller Verlag GmbH