Articles
All articles | Recent articles
Influence of Reaction-Sintering and Calcination Conditions on Thermoelectric Properties of Sm-doped Calcium Manganate CaMnO3
S. Bresch1, B. Mieller1, F. Delorme2, C. Chen2, M. Bektas3, R. Moos3, T. Rabe1
1 Advanced Technical Ceramics Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 44 – 46, D-12203 Berlin, Germany
2 Université de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, IUT de Blois, 15 rue de la chocolaterie, CS 2903, 41029 Blois Cedex, France
3 Department of Functional Materials, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
received February 28, 2018, received in revised form June 18, 2018, accepted June 27, 2018
Vol. 9, No. 3, Pages 289-300 DOI: 10.4416/JCST2018-00017
Abstract
A wide range of solid-state synthesis routes for calcium manganate is reported in the literature, but there is no systematic study about the influence of the solid-state synthesis conditions on thermoelectric properties. Therefore, this study examined the influence of calcination temperature and calcination cycles on the Seebeck coefficient, electrical conductivity, and thermal conductivity. Higher calcination temperatures and repeated calcination cycles minimized the driving force for sintering of the synthesized powder, leading to smaller shrinkage and lower densities of the sintered specimens. As the electrical conductivity increased monotonously with increasing density, a higher energy input during calcination caused deterioration of electrical conductivity. Phase composition and Seebeck coefficient of sintered calcium manganate were not influenced by the calcination procedure. The highest thermoelectric properties with the highest power factors and figures of merit were obtained by means of reaction-sintering of uncalcined powder.
Download Full Article (PDF)
Keywords
Thermoelectric oxides, calcination, solid-state-synthesis, power factor, reaction-sintering
References
1 Fergus, J.W.: Oxide materials for high temperature thermoelectric energy conversion, J. Eur. Ceram. Soc., 32, 525 – 540, (2012).
2 Löhnert, R., Stelter, M., Töpfer, J.: Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3-δ with improved thermoelectric properties, Mater. Sci. Eng., B, 223, 185 – 193, (2017).
3 Funahashi, S., Guo, H., Guo, J., Baker, A.L., Wang, K., Shiratsuyu, K., Randall, C.A.: Cold sintering and co-firing of a multilayer device with thermoelectric materials, J. Am. Ceram. Soc., 100, 3488 – 3496, (2017).
4 Delorme, F., Martin, C.F., Marudhachalam, P., Guzman, G., Ovono, D.O., Fraboulet, O.: Synthesis of thermoelectric Ca3Co4O9 ceramics with high ZT values from a CoIICoIII-layered double hydroxide precursor, Mater. Res. Bull., 47, 3287 – 3291, (2012).
5 Koumoto, K., Funahashi, R., Guilmeau, E., Miyazaki, Y., Weidenkaff, A., Wang, Y., Wan, C., Zhou, X.D.: Thermoelectric ceramics for energy harvesting, J. Am. Ceram. Soc., 96, 1 – 23, (2013).
6 Ohta, S., Nomura, T., Ohta, H., Koumoto, K.: High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals, J. Appl. Phys., 97, 034106, (2005).
7 Moos, R., Gnudi, A., Härdtl, K.H.: Thermopower of Sr1-xLaxTiO3 ceramics, J. Appl. Phys., 78, 5042 – 5047, (1995).
8 Park, K., Ko, K.Y., Seo, W.S., Cho, W.S., Kim, J.G., Kim, J.Y.: High-temperature thermoelectric properties of polycrystalline Zn1-x-yAlxTiyO ceramics, J. Eur. Ceram. Soc., 27, 813 – 817, (2007).
9 Ohtaki, M., Araki, K., Yamamoto, K.: High thermoelectric performance of dually doped ZnO ceramics, J. Electron. Mater., 38, 1234 – 1238, (2009).
10 Guilmeau, E., Díaz-Chao, P., Lebedev, O.I., Rečnik, A., Schäfer, M.C., Delorme, F., Giovannelli, F., Košir, M., Bernik, S.: Inversion boundaries and phonon scattering in Ga:ZnO thermoelectric compounds, Inorg. Chem., 56, 480 – 487, (2017).
11 Ohtaki, M., Koga, H., Tokunaga, T., Eguchi, K., Arai, H.: Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi), J. Solid State Chem., 120, 105 – 111, (1995).
12 Taguchi, H.: High-temperature phase transition of CaMnO3-δ, J. Solid State Chem., 78, 312 – 3115, (1989).
13 Bhaskar, A., Liu, C.-J., Yuan, J.J.: Thermoelectric and magnetic properties of Ca0.98RE0.02MnO3-δ (RE = Sm, Gd, and Dy), J. Electron. Mater., 41, 2338 – 2344, (2012).
14 Kabir, R., Wang, D., Zhang, T., Tian, R., Donelson, R., Teck Tan, T., Li, S.: Tunable thermoelectric properties of Ca0.9Yb0.1MnO3 through controlling the particle size via ball mill processing, Ceram. Int., 40, 16701 – 16706, (2014).
15 Thiel, P., Eilertsen, J., Populoh, S., Saucke, G., Döbeli, M., Shkabko, A., Sagarna, L., Karvonen, L., Weidenkaff, A.: Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3-δ, J. Appl. Phys., 114, 243707, (2013).
16 Srivastava, D., Azough, F., Freer, R., Combe, E., Funahashi, R., Kepaptsoglou, D.M., Ramasse, Q.M., Molinari, M., Yeandel, S.R., Baran, J.D., Parker, S.C.: Crystal structure and thermoelectric properties of Sr-Mo substituted CaMnO3: A combined experimental and computational study, J. Mater. Chem. C, 3, 12245 – 12259, (2015).
17 Reimann, T., Töpfer, J.: Thermoelectric properties of Gd/W double substituted calcium manganite, J. Alloy. Compd., 699, 788 – 795, (2017).
18 Sanmathi, C.S., Takahashi, Y., Sawaki, D., Klein, Y., Retoux, R., Terasaki, I., Noudem, J.G.: Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesised by co-precipitation technique, Mater. Res. Bull., 45, 558 – 563, (2010).
19 Lemonnier, S.b., Goupil, C., Noudem, J., Guilmeau, E.: Four-leg Ca0.95Sm0.05MnO3 unileg thermoelectric device, J. Appl. Phys., 104, 014505, (2008).
20 Su, H., Jiang, Y., Lan, X., Liu, X., Zhong, H., Yu, D.: Ca3 – xBixCo4O9 and Ca1 – ySmyMnO3 thermoelectric materials and their power-generation devices, Phys. Status Solidi, 208, 147 – 155, (2011).
21 Matsubara, I., Funahashi, R., Takeuchi, T., Sodeoka, S., Shimizu, T., Ueno, K.: Fabrication of an all-oxide thermoelectric power generator, Appl. Phys. Lett., 78, 3627, (2001).
22 Koumoto, K., Wang, Y., Zhang, R., Kosuga, A., Funahashi, R.: Oxide thermoelectric Materials: A nanostructuring approach, Annu. Rev. Mater. Res., 40, 363 – 394, (2010).
23 Reimann, T., Bochmann, A., Vogel, A., Capraro, B., Teichert, S., Töpfer, J.: Fabrication of a transversal multilayer thermoelectric generator with substituted calcium manganite, J. Am. Ceram. Soc., (2017).
24 Teichert, S., Bochmann, A., Reimann, T., Schulz, T., Dressler, C., Udich, S., Töpfer, J.: A monolithic oxide-based transversal thermoelectric energy harvester, J. Electron. Mater., 45, 1966 – 1969, (2016).
25 Segal, D.: Chemical synthesis of ceramic materials, J. Mater. Chem., 7, 1297 – 1305, (1997).
26 Jaffe, B.: Piezoelectric Ceramics. Elsevier Science, London, 2012.
27 Lemonnier, S., Guilmeau, E., Goupil, C., Funahashi, R., Noudem, J.G.: Thermoelectric properties of layered Ca3.95RE0.05Mn3O10 compounds (RE=Ce, Nd, Sm, Eu, Gd, Dy), Ceram. Int., 36, 887 – 891, (2010).
28 Noudem, J.G., Lemonnier, S., Prevel, M., Reddy, E.S., Guilmeau, E., Goupil, C.: Thermoelectric ceramics for generators, J. Eur. Ceram. Soc., 28, 41 – 48, (2008).
29 Berbenni, V., Milanese, C., Bruni, G., Cofrancesco, P., Marini, A.: Solid state synthesis of CaMnO3 from CaCO3-MnCO3 mixtures by mechanical energy, Z. Naturforsch. B, 61, (2006).
30 Xu, G., Funahashi, R., Pu, Q., Liu, B., Tao, R., Wang, G., Ding, Z.: High-temperature transport properties of Nb and Ta substituted CaMnO3 system, Solid State Ionics, 171, 147 – 151, (2004).
31 Bresch, S., Mieller, B., Selleng, C., Stöcker, T., Moos, R., Rabe, T.: Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9, J. Electroceram., (2018).
32 Campari, M., Garribba, S.: The behavior of type K thermocouples in temperature Measurement: the chromel P-Alumel thermocouples, Rev. Sci. Instrum., 42, 644 – 653, (1971).
33 Stöcker, T., Exner, J., Schubert, M., Streibl, M., Moos, R.: Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2, Materials, 9, 227, (2016).
34 Duval, T., Duval, C.: About the gravimetry analysis of precipitates: dosing of samarium, in french, Anal. Chim. Acta, 2, 228 – 229, (1948).
35 Sabry, A.I., Mahdy, A.M., Abadir, M.F.: Thermal decomposition of MnCO3 (in air), Thermochim. Acta, 98, 269 – 276, (1986).
36 Dean, J.: Lange's handbook of chemistry. 15 edition. MvGraw-Hill, Inc., New York, United States of America, 1999.
37 Rettig, F., Moos, R.: Morphology dependence of thermopower and conductance in semiconducting oxides with space charge regions, Solid State Ionics, 179, 2299 – 2307, (2008).
38 Gerthsen, P., Härdtl, K.H., Csillag, A.: Mobility determinations from weight measurements in solid solutions of (Ba, Sr)TiO3, Phys. Status Solidi, 13, 127 – 133, (1972).
39 Rettig, F., Moos, R.: Direct thermoelectric gas sensors: design aspects and first gas sensors, Sensor. Actuat., B, 123, 413 – 419, (2007).
40 Moos, R., Fandel, M., Schäfer, W.: High-load resistors of doped titanate ceramics showing PTCR behavior in the entire temperature range of operation, J. Eur. Ceram. Soc., 19, 759 – 763, (1999).
41 Salmang, H., Telle, R., Scholze, H.: (Ceramics) Keramik. Springer Berlin Heidelberg, 2006, 376 – 377.
42 Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to ceramics. Wiley, New York, 1976, 449 – 452.
43 Liou, Y.-C., Chang, L.-S., Lu, Y.-M., Tsai, H.-C., Lee, U.-R.: Effects of mechanical milling on preparation and properties of CuAl1-xFexO2 thermoelectric ceramics, Ceram. Int., 38, 3619 – 3624, (2012).
44 Zhu, Y., Wang, C., Su, W., Li, J., Liu, J., Du, Y., Mei, L.: High-temperature thermoelectric performance of Ca0.96Dy0.02RE0.02MnO3 ceramics (RE=Ho, er, Tm), Ceram. Int., 40, 15531 – 15536, (2014).
45 Bocher, L., Aguirre, M.H., Logvinovich, D., Shkabko, A., Robert, R., Trottmann, M., Weidenkaff, A.: CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials, Inorg. Chem., 47, 8077 – 8085, (2008).
46 Ledezma, K.E.: The relation between microstructure and thermoelectric properties in Ta-substituted A-site deficient CaMnO3. NTNU, Trondheim, 2017.
47 Wang, Y., Sui, Y., Cheng, J., Wang, X., Lu, Z., Su, W.: High temperature Metal-Insulator transition induced by rare-earth doping in perovskite CaMnO3, J. Phys. Chem. C, 113, 12509 – 12516, (2009).
Copyright
Göller Verlag GmbH