• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Three-Dimensional Network ZnO/BaFe12O19 Composite Thick Films and their Microwave Absorption Properties

Y. Lin, J. Dong, Y. Liu, N. Han, L. Wang, H. Yang, J. Wang

School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China

received December 12, 2017, received in revised form February 2, 2018, accepted March 4, 2018

Vol. 9, No. 2, Pages 183-192   DOI: 10.4416/JCST2017-00097

Abstract

ZnO/BaFe12O19 composite thick films with four different ZnO/BaFe12O19 mass fractions were synthesized with the tape-casting method in the presence of plate-like BaFe12O19 grains and sphere-like ZnO grains. Their phase composition, morphology and magnetic properties were analyzed by means of XRD, SEM and VSM, respectively. The microwave absorption properties were also investigated in the frequency range of 2 – 18 GHz, and the results show that the ZnO/BaFe12O19 composite thick films have multiple microwave attenuation peaks and their microwave absorption properties can be easily tuned by varying the mass ratio of BaFe12O19/ZnO. When the mass ratio of BaFe12O19 to ZnO is 15:85, the composite thick film exhibits a minimum RL of -48.6 dB at 17.2 GHz with a thickness of 4.5 mm. The electromagnetic performance of the ZnO/BaFe12O19 composite thick films could be attributed to the effective complementarities between the dielectric loss and the magnetic loss.

Download Full Article (PDF)

Keywords

Tape casting, impedance matching, microwave absorption

References

1 Hwang, Y.: Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst, Mater. Lett., 60, 3277 – 3280, (2006).

2 Chen, W., Zheng, J., Li, Y.: Synthesis and electromagnetic characteristics of BaFe12O19/ZnO composite material, J. Alloy. Compd., 513, 420 – 424, (2012).

3 Al-Ghamdi, A.A., Al-Ghamdi, A.A., Al-Turki, Y., Yakuphanoglu, F., El-Tantawy, F.: Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices, Compos. Part B- Eng., 88, 212 – 219, (2016).

4 Al-Ghamdi, A.A., Al-Hartomy, O.A., Al-Solamy, F.R., Dishovsky, N., Malinova, P., Atanasova, G., Atanasovde, N.: Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber, Compos. Part B-Eng., 96, 231 – 241, (2016).

5 Yang, C.C., Gung, Y.J., Hung, W.C., Ting, T.H., Wu, K.H.: Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites, Compos. Sci. Technol., 70, 466 – 471, (2010).

6 Kong, L., Yin, X.W., Han, M.K., Yuan, X.Y., Hou, Z.X., Ye, F., Zhang, L.T., Cheng, L.F., Xu, Z.W., Huang, J.F.: Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties, Carbon, 111, 94 – 102, (2017).

7 Gashti, M.P., Almasian, A.: Synthesizing tertiary silver/silica/kaolinite nanocomposite using photo-reduction method: characterization of morphology and electromagnetic properties, Compos. Part B-Eng., 43, 3374 – 3383, (2012).

8 Zhuo, R.F., Qiao, L., Feng, H.T., Chen, J.T., Yan, D., Wu, Z.G., Yan, P.X.: Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees, J. Appl. Phys., 104, 94101 – 94105, (2008).

9 Chen, Y.J., Cao, M.S., Wang, T.H., Wan, Q.: Microwave absorption properties of the ZnO nanowire-polyester composites, Appl. Phys. Lett., 84, 367 – 369, (2004).

10 Choi, W.H., Kim, C.G.: Broadband microwave-absorbing honeycomb structure with novel design concept, Compos. Part B-Eng., 83, 14 – 20, (2015).

11 Hu, Q., Tong, G., Wu, W., Liu, F.T., Qian, H.S., Hong, D.Y.: Selective preparation and enhanced microwave electromagnetic characteristics of polymorphous ZnO architectures made from a facile one-step ethanediamine-assisted hydrothermal approach, CrystEngComm, 15, 1314 – 1323, (2013).

12 Singhal, R.K., Samariya, A., Xing, Y.T., Kumar, S., Dolia, S.N., Deshpande, U.P., Shripathi, T., Saitovitchb, E.B.: Electronic and magnetic properties of Co-doped ZnO diluted magnetic semiconductor, J. Alloy. Compd., 496, 24 – 30, (2010).

13 Zhuo, R.F., Qiao, L., Feng, H.T., Chen, J.T., Yan, D., Wu, Z.G., Yan, P.X.: Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees, J. Appl. Phys., 104, 119.– 123, (2008).

14 Jiang, J., Ai, L.H.: SrFe12O19/ZnO hybrid structures: synthesis, characterization and properties, J. Alloy. Compd., 502, 88 – 90, (2010).

15 Cao, J., Fu, W., Yang, H., Yu, Q., Zhang, Y., Liu, S., Sun, P., Zhou, X., Leng, Y., Wang, S., Liu, B., Zou, G.: Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites, J. Phys. Chem., B, 113, 4642 – 4647, (2009).

16 Kong, L., Yin, X., Ye, F., Li, Q., Zhang, L.T., Cheng, L.F.: Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins, J. Phys. Chem. C, 117, 2135 – 2146, (2013).

17 Xu, P., Han, A.X.J., Wang, M.: Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique, J. Phys. Chem. C, 111, 5866 – 5870, (2007).

18 Yu, H.F., Liu, P.C.: Effects of pH and calcination temperatures on the formation of citrate-derived hexagonal barium ferrite particles, J. Alloy. Compd., 416, 222 – 227, (2006).

19 Paul, K.B.: Magnetic and structural properties of ba M-type ferrite-composite powders, Physica. B, 388, 337 – 343, (2007).

20 Cao, M.S., Shi, X.L., Fang, X.Y., Jin, H.B.: Microwave absorption properties and mechanism of cage-like ZnO/SiO2, nanocomposites, Appl. Phys. Lett., 91, 203110 – 203113, (2007).

21 Watanabe, H., Kimura, T., Yamaguchi, T.: Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate, J. Am. Ceram. Soc., 72, 289 – 293, (1989).

22 Ni, D.W., Schmidt, C.G., Teocoli, F., Kaiser, A., Andersen, K.B., Ramousse, S., Esposito, V.: Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95, tape cast layers: A comprehensive study on heuristic methods, J. Eur. Ceram. Soc., 33, 2529 – 2537, (2013).

23 Wang, L., Tang, G., Xu, Z.K.: Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting, Ceram. Int., 35, 487 – 492, (2009).

24 Albano, M.P., Garrido, L.B.: Aqueous tape casting of yttria stabilized zirconia, Mat. Sci. Eng. A, 420, 171 – 178, (2006).

25 Hovis, D.B., Faber, K.T.: Textured microstructures in barium hexaferrite by magnetic field assisted gelcasting and templated grain growth, Scr. Mater., 44, 2525 – 2529, (2001).

26 Lanje, A.S., Sharma, S.J., Ningthoujam, R.S., Ahn, J.S., Pode, R.B.: Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method, Adv. Powder Technol., 24, 331 – 335, (2013).

27 Rikukawa, H.: Relationship between microstructures and magnetic properties of ferrites containing closed pores, IEEE Mag., 18, 1535 – 1537, (1982).

28 Luo, H., Shen, J., Zhang, C.: Synthesis and microwave absorbing mechanism of two-layer microwave absorbers containing Li0.35Zn0.3Fe2.35O4, micro-belts and nickel-coated carbon fibers, Compos. Part B-Eng., 50, 62 – 66, (2013).

29 Bora, P.J., Azeemb, I., Vinoy, K.J., Ramamurthy, P.C., Madrasa, G.: Morphology controllable microwave absorption property of polyvinylbutyral (PVB)-MnO2 nanocomposites, Compos. Part B-Eng., 132, 188 – 196, (2018).

30 Shan, L., Chen, X.N., Tian, X., Chen, J.J., Zhou, Z.W., Jiang, M., Xua, X.L., Hui, D.: Fabrication of polypyrrole/nano-exfoliated graphite composites by in situ intercalation polymerization and their microwave absorption properties, Compos. Part B-Eng., 73, 181 – 187, (2015).

31 Zhong, B., Wang, C.J., Wen, G.W., Yu, Y.L., Xia, L.: Facile fabrication of boron and nitrogen co-doped carbon@Fe2O3/Fe3C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties, Compos. Part B-Eng., 132, 141 – 150, (2018).

32 Tang, X., Hu, K.: Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites, Mat. Sci. B-Eng., 139, 119 – 123, (2007).

33 Liu, X.G., Geng, D.Y., Meng, H., Shang, P.J., Zhang, Z.D.: Microwave-absorption properties of ZnO-coated iron nanocapsules, Appl. Phys. Lett., 92, 64 – 67, (2008).

34 Zhang, X.F., Dong, X.L., Huang, H., Lu, B., Zhu, X.G., Lei, J.P., Ma, S., Liu, W., Zhang, Z.D.: Synthesis, structure and magnetic properties of SiO2-coated fe nanocapsules, Mat. Sci. Eng. A, 454, 211 – 215, (2007).

35 Aharoni, A.: Effect of surface anisotropy on the exchange resonance modes, J. Appl. Phys., 81, 830 – 833, (1997).

36 Mercier, D., Lévy, J.C.S., Viau, G., Fiévet-Vincent, F., Fiévet, F., Toneguzzo, P., Acher, O.: Magnetic resonance in spherical co-ni and fe-co-ni particles, Phys. Rev. B, 62, 532 – 544, (2000).

37 He, S., Wang, G.S., Lu, C., Liu, J., Wen, B., Liu, H., Guo, L., Cao, M.S.: Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly (vinylidene fluoride), J. Mater. Chem. A, 1, 4685 – 4692, (2013).

38 Chen, D., Quan, H., Wang, G., Guo, L.: Hollow-MnS spheres and their hybrids with reduced graphene oxide: synthesis, microwave absorption, and lithium storage properties, Chempluschem,78, 843 – 851, (2013).

39 Zhao, B., Shao, G., Fan, B., Zhao, W., Xie, Y., Zhang, R.: Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of ni cores and TiO2 shells, Phys. Chem. Chem. Phys., 17, 8802 – 8810, (2015).

40 Zhang, X.J., Wang, G.S., Cao, W.Q., Wei, Y.Z., Liang, J.F., Guo, L., Cao, M.S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride, ACS Appl. Mater. Inte., 6, 7471 – 7478, (2014).

41 Shuai, H., Chang, L., Wang, G.S., Wang, J.W., Guo, H.Y., Guo, L.: Synthesis and growth mechanism of white-fungus-like nickel sulfide microspheres, and their application in polymer composites with enhanced microwave-absorption properties, Chempluschem, 79, 569 – 576, (2014).

42 Weng, X., Li, B., Zhang, Y., Lv, X., Gu, G.: Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties, J. Alloy. Compd., 695, 508 – 519, (2017).

43 Ghasemi, A.: Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites, J. Magn. Magn. Mater., 323, 3133 – 3037, (2011).

44 Alam, R.S., Moradi, M., Rostami, M., Nikmanesha, H., Moayedia, R., Bai, Y.: Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method, J. Magn. Magn. Mater., 381, 1 – 9, (2015).

45 Gordani, G.R., Ghasemi, A., Saidi, A.: Optimization of carbon nanotubes volume percentage for enhancement of high frequency magnetic properties of SrFe8MgCoTi2O19/MWCNTs, J. Magn. Magn. Mater., 363, 49 – 54, (2014).

46 Zhu, W., Wang, L., Zhao, R., Ren, J., Lu, G., Wang, Y.: Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals, Nanoscale, 3, 2862 – 2864, (2011).

47 Bora, P.J., Mallik, N., Ramamurthy, P.C., Kishore, Madras, G.: Poly(vinyl butyral) -polyaniline-magnetically functionalized fly ash cenosphere composite film for electromagnetic interference shielding, Compos. Part B-Eng., 106, 224 – 233, (2016).

48 Zhang, X.F., Dong, X.L., Huang, H., Liu, Y.Y.: Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89, 053115 – 053118, (2006).

49 Chen, Y.J., Gao, P., Wang, R.X., Ouyang, Q.Y., Qi, L.H., Ma, Y., Gao, P., Zhu, C.L., Cao, M.S., Jin, H.B.: Porous Fe3O4/SnO2 core/shell nanorods: synthesis and electromagnetic properties, J. Phys. Chem. C, 113, 10061 – 10064, (2009).

50 Asghari, M., Ghasemi, A., Paimozd, E., Morisako, A.: Evaluation of microwave and magnetic properties of substituted SrFe12O19, and substituted SrFe12O19/multi-walled carbon nanotubes nanocomposites, Mater. Chem. Phys., 143, 161 – 166, (2013).

51 Chen, T., Qiu, J., Zhu, K., Che, Y.C., Zhang, Y., Zhang, J.M., Li, H., Wang, F., Wang, Z.Z.: Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites, J. Mater. Sci., 25, 3664 – 3673, (2014).

52 Zheng, G., Yin, X., Liu, S., Liu, X.M., Deng, J.L., Li, Q.: Improved electromagnetic absorbing properties of Si3N4-SiC/SiO2 composite ceramics with multi-shell microstructure, J. Eur. Ceram. Soc., 33, 2173 – 2180, (2013).

53 Tang, H., Jian, X., Wu, B., Liu, S.Y., Jiang, Z.C., Chen, X.G., Lv, W.Q., He, W.D., Tian, W., Wei, Y.F., Gao, Y.Q., Chen, T., Li, G.: Fe3C/helical carbon nanotube hybrid: facile synthesis and spin-induced enhancement in microwave-absorbing properties, Compos. Part B-Eng., 107, 51 – 58, (2016).

54 Kong, L., Wang, C., Yin, X.W., Fan, X.M., Wang, W., Huang, J.F.: Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer, J. Mater. Chem. C, 5, 7479 – 7488, (2017).

55 Mondal, S., Ganguly, S., Das, P., Khastgir, D., Das, N.C.: Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites, Compos. Part B-Eng., 119, 41 – 56, (2017).

56 Bai, X., Zhai, Y., Zhang, Y.: Green approach to prepare graphene-based composites with high microwave absorption capacity, J. Phys. Chem. C, 115, 11673 – 11677, (2011).

57 Melvin, G.J.H., Ni, Q.Q., Narsuki, T.: Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites, J. Alloy. Compd., 615, 84 – 90, (2014).

58 Lv, H., Ji, G., Wang, M., Shang, C.M., Zhang, H.Q., Du, Y.W.: Hexagonal-cone like of Fe50Co50, with broad frequency microwave absorption: effect of ultrasonic irradiation time, J. Alloy. Compd., 615, 1037 – 1042, (2014).

59 Yang, X., Wang, X., Liu, X., Zhang, Y., Song, W., Shu, C., Jiang, L., Wang, C.: Preparation of graphene-like iron oxide nanofilm/silica composite with enhanced adsorption and efficient photocatalytic properties, J. Mater. Chem. A, 1, 8332 – 8337, (2013).

60 Bibi, M., Abbas, S.M., Ahmad, N., Muhammada, B., Iqbald, Z., liRanae, U.A., Salah, Khane, U.D.: Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band, Compos. Part B-Eng., 114, 139 – 148, (2017).

61 Qi, X.S., Zhong, W., Deng, Y., Au, C.K.T., Du, Y.W.: Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe-Cu nanoparticles at 450 °C, J. Phys. Chem. C, 113, 1303 – 1306, (2009).

62 Qin, Y., Che, R., Liang, C., Zhang, J., Wen, Z.: Synthesis of au and Au-CuO cubic microcages via an in situ sacrificial template approach, J. Mater. Chem., 21, 3960 – 3965, (2011).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH