Articles
All articles | Recent articles
Enhanced Electrochemical Performance of Cu-Doped La2NiO4+δ Cathode for Solid Oxide Fuel Cells
H. Chen1,2, X. Li2, X. Du2, H. Xie2, L. Zhao3, Y. Ling1,2
1 Key Laboratory of Coal-based CO2 Capture and Geological Storage, China University of Mining and Technology, Xuzhou 221116, P.R. China
2 School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, P.R. China
3 Department of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P.R. China
received November 15, 2017, received in revised form December 21, 2017, accepted January 10, 2018
Vol. 9, No. 2, Pages 155-162 DOI: 10.4416/JCST2017-0090
Abstract
To illustrate the effect of Cu-doping in Ruddlesden-Popper-type La2NiO4+δ oxides, the crystal structure, interstitial oxygen formation, electrical conductivity, catalytic activity and chromium tolerance of La2NiO4+δ(LNO)and La2Ni0.9Cu0.1O4+δ(LNCO) are analyzed. XRD Rietveld and HT-TEM results confirm that both can be identified as Ruddlesden-Popper-type structures with tetragonal symmetry. Compared with non-doped LNO, LNCO has less interstitial oxygen, and its electrical conductivity decreases owing to the reduction of the carrier concentration. The effects on electrode performance are analyzed using symmetric cells, and interface polarization resistance at 800 °C is reduced from 2.20 Ωcm2 to 0.54 Ωcm2 after Cu-doping. Experimental results together with the excellent chromium tolerance confirmed by HT-XRD results demonstrate that Cu-doped LNO can work as a promising chromium-tolerant cathode.
Download Full Article (PDF)
Keywords
Ruddlesden-Popper-type oxide, interstitial oxygen, interface polarization resistance, chromium-tolerant cathode
References
1 Nakamura, T., Oike, R., Ling, Y., Tamenori, Y., Amezawa, K.: The determining factor for interstitial oxygen formation in Ruddlesden-Popper type La2NiO4-based oxides, Phys. Chem. Chem. Phys., 18, 1564 – 1569, (2016).
2 Li, Z., Haugsrud, R: Effects of surface coatings on the determination of Dchem and kchem in La2NiO4+δ by conductivity relaxation, Solid State Ion., 206, 67 – 71, (2012).
3 Ferkhi, M., Ahmed Yahia, H.: Electrochemical and morphological characterizations of La2-xNiO4-δ (x = 0.01, 0.02, 0.03 and 0.05) as new cathodes materials for IT-SOFC, Mater. Res. Bull., 83, 268 – 274, (2016).
4 Ling, Y., Wang, F., Okamoto, Y., Nakamura, T., Amezawa, K.: Oxygen nonstoichiometry and thermodynamic explanation of large oxygen-deficient Ruddlesden-Popper oxides LaxSr3-xFe2O7-δ, J. Am. Ceram. Soc., 99, 3792 – 3801, (2016).
5 Sharma, R.K., Burriel, M., Dessemond, L., Martin, V., Bassat, J.M., Djurado, E.: An innovative architectural design to enhance the electrochemical performance of La2NiO4-δ cathodes for solid oxide fuel cell applications, J. Power Sources, 316, 17 – 28, (2016).
6 Li, Z., Norby, T., Haugsrud, R.: Synthesis, sintering, transport properties, and surface exchange of La2Ni0.9Cu0.1O4+δ, J. Am. Chem. Soc., 95, 2065 – 2073, (2012).
7 Kharton, V.V., Tsipis, E.V., Yaremchenko, A.A., Frade, J.R.: Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4+δ, Solid State Ion., 166, 327 – 337, (2004).
8 Escudero, M.J., Aguadero, A., Alonso, J.A., Daza, L.: A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy, J. Electroanal. Chem., 611, 107 – 116, (2007).
9 Escudero, M.J., Fuerte, A., Daza, L.: La2NiO4+δ potential cathode material on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for intermediate temperature solid oxide fuel cell, J. Power Sources, 196, 7245 – 7250, (2011).
10 Nakamura, T., Ling, Y., Amezawa, K.: The effect of interstitial oxygen formation on the crystal lattice deformation in layered perovskite oxides for electrochemical devices, J. Mater. Chem., A3, 10471 – 10479, (2015).
11 Vashook, V.V., Tolochko, S.P., Yushkevich, I.I., Makhnach, L.V., Kononyuk, I.F., Altenburg, H., Hauck, J., Ullmann, H.: Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2-xSrxNiOy (0≤x≤0.5), Solid State Ion., 110, 245 – 253, (1998).
12 Skinner, S.J., Kilner, J.A.: Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ, Solid State Ion., 135, 709 – 712, (2000).
13 Vashook, V.V., Trofimenko, N.E., Ullmann, H., Makhnach, L.V.: Oxygen nonstoichiometry and some transport properties of LaSrNiO4-δ nickelate, Solid State Ion., 131, 329 – 336, (2000).
14 Tucker, M.C., Kurokawa, H., Jacobson, C.P., De Jonghe, L.C., Visco, S.J.: A fundamental study of chromium deposition on solid oxide fuel cell cathode materials, J. Power Sources, 160, 130 – 138, (2006).
15 Jiang, S.P., Chen, X.B.: Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review, Int. J. Hydrogen Energy, 36, 805 – 821, (2014).
16 Kim, Y.M., Chen, X.B., Jiang, S.P., Bae, J.: Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode of solid oxide fuel cells, Electrochem. Solid-State Lett., 14, B41 – B45, (2011).
17 Horita, T., Xiong, Y.P., Kishimoto, H., Yamaji, K., Brito, M.E., Yokokawa, H.: Chromium poisoning and degradation at (La,Sr)MnO3 and (La,Sr)FeO3 cathodes for solid oxide fuel cells, J. Electrochem. Soc., 157, B614 – B620, (2010).
18 Pellegrin, E., Zaanen, J., Lin, H.J., Meigs, G., Chen, C.T., Eisaki, H., Uchida, S.: O1s near-edge X-ray absorption of La2-xSrxNiO4+δ: Holes, polarons, and excitons, Phys. Rev. B, 53, 10667 – 10679, (1996).
19 Shen, Y., Zhao, H., Swierczek, K., Du, Z., Xie, Z.: Lattice structure, sintering behavior and electrochemical performance of La1.7Ca0.3Ni1-xCuxO4+δ as cathode material for intermediate temperature solid oxide fuel cell, J. Power Sources, 240, 759 – 765, (2013).
20 Chen, Y., Zhou, W., Ding, D., Liu, M., Ciucci, F., Tade, M., Shao, Z.: Advances in cathode materials for solid oxide fuel Cells: complex oxides without alkaline earth metal elements, Adv. Energy Mater., 18, 1 – 37, (2015).
21 Ling, Y., Chen, H., Niu, J., Wang, F., Zhao, L., Ou, X., Nakamura, T., Amezawa, K.: Bismuth and indium co-doping strategy for developing stable and efficient barium zirconate-based proton conductors for high-performance H-SOFCs, J. Eur. Ceram. Soc., 36, 3423 – 3431, (2016).
22 Ling, Y., Lu, X., Niu, J., Chen, H., Ding, Y., Ou, X., Zhao, L.: Antimony doped barium strontium ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells, J. Alloy. Compd., 666, 23 – 29, (2016).
23 Choisnet, J., Abadzhieva, N., Stefanov, P., Klissurski, D., Bassat, J.M., Rives, V., Minchev, L.: X-ray photoelectron spectroscopy, temperature-programmed desorption and temperature-programmed reduction study of LaNiO3 and La2NiO4+δ catalysts for methanol oxidation, J. Chem. Soc., Faraday Trans., 90, 1987 – 1991, (1994)
24 Ling, Y., Zhao, L., Liu, X., Lin, B.: Tailoring electrochemical property of layered perovskite cathode by Cu-doping for proton-conducting IT-SOFCs, Fuel Cells, 15, 384 – 389, (2015).
25 Kharton, V.V., Vtsipis, E., Yaremchenko, A.A., Frade, J.R.: Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4-δ, Solid State Ion., 166, 327 – 337, (2004).
26 Nakamura, T., Yashiro, K., Sato, K., Mizusaki, J.: Electronic state of oxygen nonstoichiometric La2 – xSrxNiO4+δ at high temperatures, Phys. Chem. Chem. Phys., 11, 3055 – 3062, (2009).
27 Boehm, E., Bassat, J.M., Steil, M.C., Dordor, P., Mauvy, F., Grenier, J.C.: Oxygen transport properties of La2Ni1-xCuxO4+δ mixed conducting oxides, Solid State Sci., 5, 973 – 981, (2003).
28 Li, H., Chen, X., Chen, S., Wu, Y., Xie, K.: Composite manganate oxygen electrode enhanced with iron oxide nanocatalyst for high temperature steam electrolysis in a proton-conducting solid oxide electrolyzer, Int. J. Hydrogen Energy, 40, 7920 – 7931, (2015).
29 Ralph, J.M., Schoeler, A.C., Krumpelt, M.: Materials for lower temperature solid oxide fuel cells, J. Mater. Sci., 36, 1161 – 1172, (2001).
30 Chen, D., Huang, C., Ran, R., Park, H., Kwak, C., Shao, Z.: New Ba0.5Sr0.5Co0.8Fe0.2O3-δ +Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity, Electrochem. Commun., 13, 197 – 199, (2011).
31 Aguadero, A., Alonso, J.A., Escudero, M.J., Daza, L.: Evaluation of the La2Ni1-xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes, Solid State Ion., 179, 393 – 400, (2008).
32 Nakamura, T., Yashiro, K., Sato, K., Mizusaki, J.: Thermodynamic quantities and defect equilibrium in La2-xSrxNiO4+δ, J. Solid State Chem., 182, 1121 – 1128, (2009).
33 Makhnach, L.V., Pankov, V.V., Strobel, P.: High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelates La2-xSrxNiO4-δ (x = 1 and 1.4), Mater. Chem. Phys., 111, 125 – 130, (2008).
34 Ling, Y., Wang, F., Budiman, R. Nakamura, T., Amezawa, K.: Oxygen nonstoichiometry, the defect equilibrium model and thermodynamic quantities of the ruddlesden-popper oxide Sr3Fe2O7-δ, Phys. Chem. Chem. Phys., 17, 7489 – 7497, (2015)
35 Ling, Y., Guo, T., Zhang, X., Budiman, R., Fujimaki, Y., Nakamura, T., Lin, B., Kawada, T., Amezawa, K.: Evaluation of electrical conductivity and oxygen diffusivity of the typical ruddlesden-popper oxide Sr3Fe2O7-δ, Ceram. Int., 48, 16264 – 16269, (2017).
Copyright
Göller Verlag GmbH