• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Enhanced Magneto-Dielectric Properties of 0.6La0.1Bi0.9FeO3- 0.4BaTiO3/NiFe2O4 Composites Sintered with Powders Prepared with a One-Step Sol-Gel In-Situ Method

L. He, J. H. Wang, Z. T. Zhong, C. Zhang

School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China

received November 30, 2017, received in revised form January 14, 2018, accepted February 8, 2018

Vol. 9, No. 2, Pages 175-182   DOI: 10.4416/JCST2017-00096

Abstract

0.6La0.1Bi0.9FeO3-0.4BaTiO3/NiFe2O4 (0.6LBFO-0.4BT/NFO) composite powders were firstly prepared using a simple one-step sol-gel in-situ method. The phase evolution with the calcination temperature was studied. The dense-sintered 0.6LBFO-0.4BT/NFO ceramics were synthesized, and the phase composition as well as the surface morphology were characterized. The dielectric and magnetic properties were measured. The results indicated that with increasing concentration of NFO, the ceramic composite shows an increased dielectric constant (ε’) while the dielectric loss tangent (tan δε) value decreases at low frequencies range (in 5 kHz). The magnetic measurement indicates that all the composites show single-phase-like magnetic hysteresis loops and the introduction of NFO can significantly enhance the saturation magnetization (Ms) of 0.6LBFO-0.4BT.

Download Full Article (PDF)

Keywords

Ceramic composites, sol-gel in-situ method, magnetic-dielectric properties

References

1 Schmid, H.: Multi-ferroic magnetoelectrics, Ferroelectrics, 162, [1], 317 – 338, (1994).

2 Fiebig, M., Lottermoser, T., Frohlich, D., Goltsev, A.V., Pisarev, R.V.: Observation of coupled magnetic and electric domains, Nature, 419, [6909], 818 – 20, (2002).

3 Spaldin, N.A., Fiebig, M.: Materials science. the renaissance of magnetoelectric multiferroics, Science, 309, [5733], 391 – 2, (2005).

4 Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials, Nature, 442 [7104], 759 – 65, (2006).

5 Kaletsch, A., Bezold, A., Pfaff, E.M., Broeckmann, C.: Effects of copper oxide content in AgCuO braze alloy on microstructure and mechanical properties of reactive-air-brazed Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF), J. Ceram. Sci. Tech., 3, [2], 95 – 103, (2012).

6 Neaton, J.B., Ederer, C., Waghmare, U.V., Spaldin, N.A., Rabe, K.M.: First-principles study of spontaneous polarization in multiferroicBiFeO3, Phys. Rev. B, 71, [1], (2005).

7 Wu, J., Xu, J., Li, N., Jiang, Y., Xie, Z.: The phase diagram and magnetic properties of co and ti co-doped (1-x)BiFeO3-xLaFeO3 solid solutions, J. Alloy. Compd., 650, 878 – 883, (2015).

8 Simoes, A.Z., Gonzalez, A.H.M., Cavalcante, L.S., Riccardi, C.S., Longo, E., Varela, J.A.: Ferroelectric characteristics of BiFeO3 thin films prepared via a simple chemical solution deposition, J. Appl. Phys., 101, [7], (2007).

9 Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater., 5, [10], 823 – 829, (2006).

10 Yao, Q.R., Cai, J., Zhou, H.Y., Rao, G.H., Wang, Z.M., Deng, J.Q.: Influence of La-doping on structure and magnetic behaviors in BiFeO3, J. Alloy. Compd., 633, 170 – 173, (2015).

11 Chybczynska, K., Markiewicz, E., Blaszyk, M., Hilczer, B., Andrzejewski, B.: Dielectric response and electric conductivity of ceramics obtained from BiFeO3 synthesized by microwave hydrothermal method, J. Alloy. Compd., 671, 493 – 501, (2016).

12 Selbach, S.M., Einarsrud, M.-A., Grande, T.: On the thermodynamic stability of BiFeO3, Chem. Mater., 21, [1], 169 – 173, (2009).

13 Liu, J., Li, M., Hu, Z., Pei, L., Wang, J., Liu, X., Zhao, X.: Effects of ion-doping at different sites on multiferroic properties of BiFeO3 thin films, Appl. Phys. A-Mater., 102, [3], 713 – 717, (2011).

14 Basiri, M.H., Shokrollahi, H., Isapour, G.: Effects of la content on the magnetic, electric and structural properties of BiFeO3, J. Magn. Magn. Mater., 354, 184 – 189, (2014).

15 Sharma, P., Varshney, D., Satapathy, S., Gupta, P.K.: Effect of pr substitution on structural and electrical properties of BiFeO3 ceramics, Mater. Chem. Phys., 143, [2], 629 – 636, (2014).

16 Srivastava, A., Singh, H.K., Awana, V.P.S., Srivastava, O.N.: Enhancement in magnetic and dielectric properties of la and pr co substituted BiFeO3, J. Alloy. Compd., 552, 336 – 344, (2013).

17 Wang, D., Wang, M., Liu, F., Cui, Y., Zhao, Q., Sun, H., Jin, H., Cao, M.: Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization, Ceram. Int., 41, [7], 8768 – 8772, (2015).

18 Godara, P., Agarwal, A., Ahlawat, N., Sanghi, S.: Crystal structure refinement, dielectric and magnetic properties of sm modified BiFeO3 multiferroic, J. Mol. Struct., 1097, 207 – 213, (2015).

19 Koval, V., Skorvanek, I., Reece, M., Mitoseriu, L., Yan, H.: Effect of dysprosium substitution on crystal structure and physical properties of multiferroic BiFeO3 ceramics, J. Eur. Ceram. Soc., 34, [3], 641 – 651, (2014).

20 Yang, C., Liu, C.Z., Wang, C.M., Zhang, W.G., Jiang, J.S.: Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles, J. Magn. Magn. Mater., 324, [8], 1483 – 1487, (2012).

21 Wu, M.S., Huang, Z.B., Han, C.X., Yuan, S.L., Lu, C.L., Xia, S.C.: Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping, Solid State Commun., 152, [24], 2142 – 2146, (2012).

22 Chaudhari, Y.A., Singh, A., Mahajan, C.M., Jagtap, P.P., Abuassaj, E.M., Chatterjee, R., Bendre, S.T.: Multiferroic properties in zn and ni co-doped BiFeO3 ceramics by solution combustion method (SCM), J. Magn. Magn. Mater., 347, 153 – 160, (2013).

23 Rao, T.D., Kumari, A., Niranjan, M.K., Asthana, S.: Enhancement of magnetic and electrical properties in Sc substituted BiFeO3 multiferroic, Physica B, 448, 267 – 272, (2014).

24 Najm, A.A.A., Shaari, A.H., Baqiah, H., Bin Saion, E., Pah, L.K., Kien, C.S., Kechik, M.M.A.: Structural, electrical and magnetic properties of BiFe1-xYxO3 (0 <= x <= 0.6) ceramics, J. Ceram. Sci. Tech., 7, [4], 329 – 334, (2016).

25 Zhu, L.-F., Zhang, B.-P., Li, S., Zhao, L., Wang, N., Shi, X.-C.: Enhanced piezoelectric properties of Bi(Mg1/2Ti1/2)O3 modified BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary, J. Alloy. Compd., 664, 602 – 608, (2016).

26 Pang, D., He, C., Han, S., Pan, S., Long, X., Tailor, H.: A new multiferroic ternary solid solution system of BiFeO3-Pb(Fe1/2Nb1/2)O3-PbTiO3, J. Eur. Ceram. Soc., 35, [7], 2033 – 2040, (2015).

27 Naseri, M.G., Saion, E.B., Ahangar, H.A., Hashim, M., Shaari, A.H.: Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method, Powder Technol., 212, [1], 80 – 88, (2011).

28 Sarkar, B., Dalal, B., Ashok, V.D., Chakrabarti, K., Mitra, A., De, S.K.: Magnetic properties of mixed spinel BaTiO3-NiFe2O4 composites, J. Appl. Phys., 115, [12], (2014).

29 Chen, J., Tang, Z., Bai, Y., Zhao, S.: Multiferroic and magnetoelectric properties of BiFeO3/Bi4Ti3O12 bilayer composite films, J. Alloy. Compd., 675, 257 – 265, (2016).

30 Gao, X., Rodriguez, B.J., Liu, L., Birajdar, B., Pantel, D., Ziese, M., Alexe, M., Hesse, D.: Microstructure and properties of well-ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites, Acs Nano, 4, [2], 1099 – 1107, (2010).

31 Dipti, Kumar, P., Juneja, J.K., Singh, S., Raina, K.K., Prakash, C.: Improved dielectric and magnetic properties in modified lithium-ferrites, Ceram. Int., 41, [2], 3293 – 3297, (2015).

32 Gul, I.H., Amin, F., Abbasi, A.Z., Anis-ur-Rehmanb, M., Maqsood, A.: Physical and magnetic characterization of co-precipitated nanosize Co-Ni ferrites, Scripta Mater., 56, [6], 497 – 500, (2007).

33 Ciomaga, C.E., Airimioaei, M., Nica, V., Hrib, L.M., Caltun, O.F., Iordan, A.R., Galassi, C., Mitoseriu, L., Palamaru, M.N.: Preparation and magnetoelectric properties of NiFe2O4-PZT composites obtained in-situ by gel-combustion method, J. Eur. Ceram. Soc., 32, [12], 3325 – 3337, (2012).

34 Shi, C., Liu, X., Hao, Y., Hu, Z.: Structural, magnetic and dielectric properties of sc modified (1-y) BiFeO3-yBaTiO3 ceramics, Solid State Sciences, 13, [10], 1885 – 1888, (2011)

35 Unruan, S., Srilomsak, S., Priya, S., Jantaratana, P., Rujirawat, S., Yimnirun, R.: Local structure investigation and properties of Mn-doped BiFeO3-BaTiO3 ceramics, Ceram. Int., 41, [3], 4087 – 4092, (2015)

36 Rai, R., Bdikin, I., Valente, M.A., Kholkin, A.L.: Ferroelectric and ferromagnetic properties of Gd-doped BiFeO3-BaTiO3 solid solution, Mater. Chem. Phys., 119, [3], 539 – 545, (2010).

37 Priya, A.S., Banu, I.B.S., Anwar, S.: Investigation of multiferroic properties of doped BiFeO3-BaTiO3 composite ceramics, Mater. Lett., 142, 42 – 44, (2015).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH