• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Nb2AlC-Particle-Reinforced ZrO2-Matrix Composites

M. Stumpf1, J. Biggemann1, T. Fey1,2, K. Kakimoto2, P. Greil1

1 Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany
2 Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 – 8555, Japan

received February 9, 2018, received in revised form March 21, 2018, accepted April 2, 2018

Vol. 9, No. 3, Pages 271-278   DOI: 10.4416/JCST2018-00013

Abstract

Nb2AlC-particle-loaded ZrO2-matrix composites were manufactured by means of pressureless sintering (PS) and spark plasma sintering (SPS) at 1300 °C. The MAX phase Nb2AlC was synthesized based on the reaction of Nb, NbC and Al powder mixtures at 1600 °C in Ar-atmosphere. Nb2AlC formation was confirmed with XRD and ICP-OES. Nano-particulate tetragonal 3Y-TZP powder was mixed with Nb2AlC powder with a mean particle size of 7.93 µm up to a volume fraction of 19.5 %. While the microstructure of the PS composites revealed a residual porosity of 20 – 22 %, almost dense materials with a residual porosity ≤ 2.35 % were obtained by means of SPS. With increasing Nb2AlC fraction a significant improvement of the mechanical properties was observed. An increase in fracture toughness of up to 46 % (PS) and 67 % (SPS) measured on composites loaded with 19.5 vol% Nb2AlC compared to pure 3Y-TZP was attributed to crack bridging of Nb2AlC particles which, depending on the orientation, may attain high strain values owing to basal slip and kink band formation.

Download Full Article (PDF)

Keywords

Nb2AlC, ZrO2, particle composite, toughness

References

1 Evans, A.G.: Perspective on the development of high-toughness ceramics, J. Am. Ceram. Soc., 73, 187 – 206, (1990).

2 Evans, A.G., Heuer, A.H.: Review-transformation toughening in Ceramics: Martensitic transformations in crack-tip stress fields, J. Am. Ceram. Soc., 63, 241 – 248, (1980).

3 Taya, M., Hayashi, S., Kobayashi, A.S., Yoon, H.S.: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc., 73, 1382 – 1391, (1990).

4 Yeomans, Y.: Ductile particle ceramic matrix composites – scientific curiosities or engineering materials, J. Eur. Ceram. Soc., 28, 1543 – 1550, (2008).

5 Niihara, K.: New design concept of structural ceramics: Ceramic nanocomposites. J. Ceram. Soc. Japan., 99, 974 – 982, (1991).

6 Radovic, M., Barsoum, M.: MAX phases bridging the gap between metals and ceramics, Am. Ceram. Soc. Bull., 92, 20 – 7, (2013).

7 Barsoum, M.W., El-Raghy, T.: Room-temperature ductile carbides, Metall. Mat. Trans. A, 30, 363 – 369, (1999).

8 Greil, P.: Generic principles of crack healing ceramics, J. Adv. Ceram., 1, 249 – 267, (2012).

9 Zhang, W., Travitzky, N., Hu, C.F., Zhou, Y.C., Greil, P.: Reactive hot pressing and properties of Nb2AlC, J. Am. Ceram. Soc., 92, 2396 – 2399, (2009).

10 Sun, Z., Li, S., Ahnya, R., Schneider, J.M.: Calculated elastic properties of M2AlC (M = Ti, Va, Cr, Nb, and Ta), Solid State Commun., 129, 589 – 592, (2004).

11 Salama, I., El-Raghy, T., Barsoum, M.W.: Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC, J. Alloy. Compd., 347, 271 – 278, (2002).

12 Barsoum, M.W., Radovic, M.: Elastic and mechanical properties of the MAX phases, Ann. Rev. Mater. Res., 41, 195 – 227, (2011).

13 Music, D., Sun, Z., Voevodin, A.A., Schneider, J.M.: Ab initio study of basal slip in Nb2AlC, J. Phys. Condens. Mat., 18, 4389 – 4395, (2006).

14 Pan, W., Shi, S.L.: Microstructure and mechanical properties of Ti3SiC2/3Y-TZP composites by spark plasma sintering, J. Eur. Ceram. Soc., 27, 413 – 417, (2007).

15 Wang, Y.C., Liang, Z.H., Peng, G.H., Xu, J.G.: Synthesis of Nb2AlC material by high temperature solid state reaction method, Key Eng. Mat., 655, 240 – 243, (2015).

16 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. Soc., 64, 533 – 538, (1981).

17 Chu, H.L., Wang, C.L., Lee, H.E., Sie, Y.Y., Chen, R.S., Hwang, W.S., Wang, M.C.: Effect of sintering process parameters on the properties of 3Y-PSZ ceramics, Mat. Sci. Eng., 47, 012005, (2013).

18 Kulkarni, A., Vaidya, A., Goland, A., Sampath, S., Herman, H.: Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings, Mat. Sci. Eng. A, 359, 100 – 111, (2003).

19 Bordia, R.K., Scherer, G.W.: On constrained sintering – III. Rigid inclusions, Acta Metall., 36, 2411 – 2416, (1988).

20 Smith, J.F., Carlson, O.N.: The niobium-carbon system, J. Nucl. Mater., 148, 1 – 16, (1987).

21 Zhang, S., Zhao, D.L.: Aerospace Materials Handbook. CRC Press, Baton Rouge, FL (2013)

22 Selsing, J.: Internal stresses in ceramics, J. Am. Ceram. Soc., 44, 419, (1961).

23 Barsoum, M., Farber, L., El-Raghy, T.: Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2, Metall. Mater. Trans. A, 30, 1727 – 1738, (1999).

24 Morscher, G.N., Pirouz, P., Heuer, A.H.: Temperature dependence of hardness in yttria-stabilized zirconia single crystals, J. Am. Ceram. Soc., 74, 491 – 500, (1991).

25 Gogotsi, G.A., Ostrovoy, D.Y.: Deformation and strength of engineering ceramics and single crystals, J. Eur. Ceram. Soc., 15, 271 – 281, (1995).

26 Pan, W., Shi, S.L.: Microstructure and mechanical properties of Ti3SiC2/3Y-TZP composites by spark plasma sintering, J. Eur. Ceram. Soc., 27, 413 – 417, (2007).

27 Ohji, T., Jeong, Y.K., Choa, Y.H., Niihara, K.: Strengthening and toughening mechanisms of ceramic nanocomposites, J. Am. Ceram. Soc., 81, 1453 – 1460, (1998).

28 Becher, P.F.: Microstructural design of toughened ceramics, J. Am. Ceram. Soc., 74, 255 – 269, (1991).

29 Faber, K.T., Evans, A.G.: Crack deflection processes - I. theory, Acta Metall., 31, 565 – 576, (1983).

30 Budiansky, B., Amazigo, J.C., Evans, A.G.: Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics, J. Mech. Phys. Solids, 36, 167 – 187, (1988).

31 Evans, A.G., Faber, K.T.: Toughening of ceramics by circumferential microcracking, J. Am. Ceram. Soc., 64, 394 – 398, (1981).

32 Basu, B., Veugels, J., van der Biest, O.: Toughness tailoring of yttria-doped zirconia ceramics, Mat. Sci. Eng. A, 380, 215 – 221, (2004).

33 Salama, I., El-Rhagby, T., Barsoum, M.W.: Oxidation of Nb2AlC and (Ti, Nb)2AlC in air, J. Electrochem. Soc., 150, C152 – 158, (2003).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH