• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Microstructure and Properties of Carbon Block Refractories Containing Thermally Oxidized Anthracite for Blast Furnaces

T. Wang, S. Sang, Y. Li, Y. Xu, Q. Wang

The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China

received October 10, 2017, received in revised form November 23, 2017, accepted December 4, 2017

Vol. 9, No. 1, Pages 85-92   DOI: 10.4416/JCST2017-00081

Abstract

Carbon block refractories containing thermally oxidized anthracite (TOA) and additives of Al and Si were prepared for use in blast furnaces. The TOA was obtained by treating electrically calcined anthracite (ECA) using the thermal oxidation method. It was then introduced into carbon blocks by partially or totally replacing the ECA raw materials. The microstructure and properties of carbon block refractories heated in a coke bed at 1400 °C were investigated. The results revealed that TOA accelerated the formation of β-SiC whiskers and β-Sialon phases in carbon block refractories because TOA has higher reactivity than ECA. Properties such as the cold compressive strength, mean pore diameter, < 1 μm pore volume ratio and thermal conductivity of carbon block refractories with TOA were improved remarkably compared with those without TOA. It was suggested that the in-situ-formed ceramic phases in the matrix and on the aggregates both had a strengthening effect on the carbon block refractories. Moreover, the whiskers formed in the matrix were more favorable for forming an excellent microporosity structure as they filled the pores while the whiskers on the aggregates were more beneficial for reducing the interface thermal resistance between the aggregates and matrix, thus promoting the thermal conductivity of the carbon block refractories.

Download Full Article (PDF)

Keywords

Thermally oxidized anthracite, microstructure, thermal conductivity, carbon block refractories

References

1 Zhang, G.L., Ma, L.Q., Xiang, Z.L., Zhang, J.P.: Selection of materials and property of carbon blocks for blast furnace, Carbon Techniques, 6, 44 – 47, (2003).

2 Liu, Z.J., Zhang, J.L., Zuo, H.B., Yang, T.J.: Recent progress on long service life design of Chinese blast furnace hearth, ISIJ International, 52, 1713 – 1723, (2012).

3 Li, Y.W.: Optimization of microstructure and performance of refractories for blast furnace hearth. 2014, PhD Dissertation, Wuhan University of Science and Technology.

4 Jiao, K.X., Zhang, J.L., Liu, Z.J., Xu, M., Liu, F.: Formation mechanism of the protective layer in a blast furnace hearth. Int. J. Min., Met. Mater., 52, 1713 – 1723, (2012).

5 Hao, Y.Z., Hao, Q.: Selection of local supplied material for blast furnace bottom and hearth lining and lining structure, Ironmaking, 24, 39 – 42, (2005).

6 Chen, X.L., Li, Y.W., Li, Y.B., Jin, S.L., Zhao, L., Ge, S.: Effect of temperature on the properties and microstructures of carbon block refractories for blast furnace, Metall. Mater. Trans. A, 40, 1675 – 1683, (2009).

7 Li, Y.W., Chen, X.L., Sang, S.B., Li, Y.B., Jin, S.L., Zhao, L., Ge, S.: Microstructures and properties of carbon block refractories for blast furnaces with SiO2 and al additions, Metall. Mater. Trans. A, 41, 2085 – 2091, (2010).

8 Chen, X.L., Li, Y.W., Sang, S.B., Zhao, L., Jin, S.L., Li, S.J.: Properties and microstructures of blast furnace carbon block refractories with al additions, Ironmak. Steelmak., 37, 398 – 405, (2010).

9 Li, Y.W., Chen, X.L., Li, Y.B., Jin, S.L., Ge, S., Zhao, L., Li, S.J.: Effect of silicon addition on pore structure and thermal conductivity of fired carbon specimens, Naihuo Cailiao, 42, 401 – 404, (2008).

10 Chen, X.L., Li, Y.W., Li, Y.B., Jin, S.L., Ge, S., Zhao, L., Li, S.J.: Effect of silicon particle size on porous structure and thermal conductivity of coked carbon brick, J. Wuhan Univ. Sci. Technol., 32, 155 – 159, (2009).

11 Liao, N., Li, Y.W., Jin, S.L., Xu, Y.B., Sang, S.B., Deng, Z.J.: Combined effects of boron carbide, silicon, and MWCNTs in alumina-carbon block refractories on their microstructural evolution, J. Am. Ceram. Soc., 2016, .

12 Li, Y.W., Sang, S.B., Li, Y.W.: In-situ decomposition of kyanite and its influence on properties of carbon blocks, Bull. Chin. Ceram. Soc., 34, 938 – 950, (2015).

13 Zhu, T.B., Li, Y.W., Sang, S.B., Chen, X.L., Zhao, L., Li, Y.B., Li, S.J.: Microstructure and properties of zircon-added carbon block refractories for blast furnace, Metall. Mater. Trans. A, 43, 4356 – 4363, (2012).

14 Roungos, V., Aneziris, C.G.: Improved thermal shock performance of Al2O3-C refractories due to nanoscaled additives, Ceram. Int., 38, 919 – 927, (2012).

15 Kun, P., Tapaszto, O., Weber, F., Balazsi, C.: Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites, Ceram. Int., 38, 211 – 216, (2012).

16 Luo, M., Li, Y.W., Jin, S.L., Sang. S.B., Zhao, L., Li, Y.B.: Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes, Mater. Sci. Eng., A, 548, 134 – 141, (2012).

17 Li, Y.W., Chen, X.L., Li, Y.B., Sang, S.B., Zhao, L.: Effect of multiwalled carbon nanotubes on the thermal conductivity and porosity characteristics of blast furnace carbon block refractories, Metall. Mater. Trans. A, 41, 2383 – 2387, (2010).

18 Wang, Q.H., Li, Y.W., Sang, S.B., Jin, S.L.: Effect of the reactivity and porous structure of expanded graphite (EG) on microstructure and properties of Al2O3-C refractories, J. Alloy. Compd., 645, 388 – 397, (2015).

19 Zhu, T.B., Li, Y.W., Jin, S.L., Sang, S.B. et al.: Microstructure and mechanical properties of MgO-C refractories containing expanded graphite, Ceram. Int., 39, 4529 – 4537, (2012).

20 Zhu, T.B., Li, Y.W., Luo, M., Sang, S.B. et al.: Microstructure and mechanical properties of MgO-C refractories containing graphite oxide nanosheets (GONs), Ceram. Int., 39, 3017 – 3025, (2012).

21 Gonzalez, D., Montesmoran, M.A., Suarez-Ruiz, I., Garcia, A.B.: Structural characterization of graphite materials prepared from anthracites of different characteristics: A comparative analysis, Energy Fuels, 18, 365 – 370, (2004).

22 Gonzalez, D., Montesmoran, M.A., Garcia, A.B.: Graphite materials prepared from an anthracite: A structural characterization, Energy Fuels, 17, 1324 – 1329, (2003).

23 Atria, J.V., Rusinko, F., Schobert, H.H.: Structural ordering of pennsylvania anthracites on heat treatment to 2000 – 2900 °C, Energy Fuels, 16, 1343 – 1347, (2002).

24 Gonzalez, D., Altin, O., Eser, S., Garcia, A.B.: Temperature-programmed oxidation studies of carbon materials prepared from anthracites by high temperature treatment, Mater. Chem. Phys., 101, 137 – 141, (2007).

25 Li, Y.W., Wang, Q.H., Fan, H.B., Sang, S.B., Li, Y.B., Zhao, L.: Synthesis of silicon carbide whiskers using reactive graphite as template, Ceram. Int., 40, 1481 – 1488, (2014).

26 Wang, T.S., Li, Y.W., Sang, S.B.: Nickel-catalyzed construction of heat conductive network in electrically calcined anthracite (ECA) based carbon blocks, China's Refractories, 26, 31 – 37, (2017).

27 Wang, Y., Alsmeyer, D.C., Mccreery, R.L.: Raman spectroscopy of carbon materials: Structural basis of observed spectra, Chem. Mater., 2, 557 – 563, (1990).

28 Illekova, E., Csomorova, K.: Kinetics of oxidation in various forms of carbon, J. Therm. Anal. Calorim., 80, 103 – 108, (2005).

29 Sharma, H.N., Pahalagedara, L., Joshi, A., Suib, S.L., Mhadeshwar, A.B.: Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis, Energy Fuels, 26, 5613 – 5625, (2012).

30 Menendez, J.A., Arenillas, A., Fidalgo, B., Fernandez, Y., Zubizarreta, L., Calvo, E.G., Bermudez, J.M.: Microwave heating processes involving carbon materials, Fuel Process. Technol., 91, 1 – 8, (2010).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH