Articles
All articles | Recent articles
Mechanical Behaviour of Zirconia-Toughened Alumina Laminates with or without Y-PSZ Intermediate Layers
M.D. Barros1, P.L. Rachadel1, M.C. Fredel1, R. Janssen2, D. Hotza3
1 Department of Mechanical Engineering, Federal University of Santa Catarina (UFSC), 88040 – 900, Florianópolis, SC, Brazil
2 Institute of Advanced Ceramics, Hamburg University of Technology (TUHH), Denickestrasse 15, D-21073 Hamburg, Germany
3 Department of Chemical Engineering, Federal University of Santa Catarina (UFSC), 88040 – 900, Florianópolis, SC, Brazil
received September 21, 2017, received in revised form October 23, 2017, accepted November 15, 2017
Vol. 9, No. 1, Pages 69-78 DOI: 10.4416/JCST2017-00077
Abstract
Zirconia-toughened alumina (ZTA) laminates with 5 vol% (95A) and 30 vol% (70A) of yttria-partially stabilized zirconia (Y-PSZ), as well as laminated composites with thick ZTA layers and thin Y-PSZ layers were developed and processed by means of tape casting followed by co-firing. The addition of 5 vol% Y-PSZ led to grain refinement, higher densification and an increase in mechanical properties compared to those of pure alumina. In contrast, the addition of 30 vol% Y-PSZ refined the alumina grains and formed clusters of zirconia. However, it promoted lower densification when compared to pure alumina and 95A. Nevertheless, mechanical strength increased in the 70A composites owing to the zirconia toughening mechanism. Laminated composites with intermediate Y-PSZ layers have shown thermal residual stresses after sintering as a result of the different coefficients of thermal expansion (CTE) of the components and higher performance in mechanical behaviour owing to compressive stresses in ZTA layers and to the zirconia toughening mechanism present in Y-PSZ thin layers and in ZTA with 30 vol% thick layers.
Download Full Article (PDF)
Keywords
ZTA, Y-PSZ, laminated composites, tape casting
References
1 Volkmann, E., Tushtev, K., Koch, D., Wilhelmi, C., Göring, J. Rezwan, K.: Assessment of three oxide/oxide ceramic matrix composites: mechanical performance and effects of heat treatments, Compos. Part A Appl. Sci. Manuf., 68, 19 – 28, (2015).
2 Bansal, N.P., Lamon, J.: Ceramic matrix composites: Materials, modeling and technology. 2015.
3 Tuan, W.H., Chen, R.Z., Wang, T,C,, Cheng, C.H., Kuo, P.S.: Mechanical properties of Al2O3/ZrO2 composites, J. Eur. Ceram. Soc., 22, [16], 2827 – 2833, (2002).
4 Shin, Y., Rhee, Y., Kang, S.: Experimental evaluation of toughening mechanisms in Alumina-Zirconia composites, J. Am. Ceram. Soc., 82, [5], 1229 – 1232, (1999).
5 Karihaloo, B.L.: Contribution of t→ m phase transformation to the toughening of ZTA, J. Am. Ceram. Soc., 74, [7], 1703 – 1706, (1991).
6 Lange, F.F.: Transformation toughening: part 4 – fabrication fracture toughness and strength of Al2O3- ZrO2 composites, J. Mater. Sci., 17 247 – 254, (1982).
7 Green, D.J., Hannink, R.H.J., Swain, M.V.: Transformation toughening of ceramics, Boca Raton, FL. CRS Press. Inc, 232 (1989).
8 Stevens, R.: An introduction to zirconia, Magnesium Elektron Publication No. 113, Stroke on Trent, UK, Sherwin Rivers (1983).
9 Casellas, D., Nagl, M.M., Llanes, L., Anglada, M.: Growth of small surface indentation cracks in alumina and zirconia toughened alumina, Key Eng. Mater., 127 – 131, 895 – 902, (1997).
10 Wang, J., Stevens, R.: Zirconia-toughened alumina (ZTA) ceramics, J. Mater. Sci., 24, [10], 3421 – 3440, (1989).
11 Evans, A.G., Cannon, R.M.: Toughening of brittle solids by martensitic transformations, Acta Metall., 34, [5], 761 – 800, (1986).
12 Gurauskis, J., Sánchez-Herencia, A.J., Baudín, C.: Alumina-zirconia layered ceramics fabricated by stacking water processed green ceramic tapes, J. Eur. Ceram. Soc., 27, [2 – 3], 1389 – 1394, (2007).
13 Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., Birchall, J.D.: A simple way to make tough ceramics, Nature, 347, [6292], 455 – 457, (1990).
14 Ma, J., Wang, H., Weng, L., Tan, G.E.B.: Effect of porous interlayers on crack deflection in ceramic laminates, J. Eur. Ceram. Soc., 24, [5], 825 – 831, (2004).
15 Bueno, S., Baudín, C.: Design and processing of a ceramic laminate with high toughness and strong interfaces, Compos. Part A Appl. Sci. Manuf., 40, [2], 137 – 143, (2009).
16 Ferrari, B., Bartret, A., Baudín, C.: Sandwich materials formed by thick alumina tapes and thin-layered alumina-aluminium titanate structures shaped by EPD, J. Eur. Ceram. Soc., 29, [6], 1083 – 1092, (2009).
17 Bueno, S., Moreno, R., Baudín, C.: Design and processing of Al2O3-Al2TiO5 layered structures, J. Eur. Ceram. Soc., 25, [6], 847 – 856, (2005).
18 Zhang, J.X., Jiang, D.L., Qin, S.Y., Huang, Z.R.: Fracture behavior of laminated SiC composites, Ceram. Int., 30, [5], 697 – 703, (2004).
19 Jiménez-Melendo, M., Gutiérrez-Mora, F., Domínguez-Rodríguez, A.: Effect of layer interfaces on the high-temperature mechanical properties of alumina/zirconia laminate composites, Acta Mater., 48, [18], 4715 – 4720, (2000).
20 Quinn, G.D., Melandri, C., De Portu, G.: Edge chipping resistance of alumina/zirconia laminates, J. Am. Ceram. Soc., 96, [7], 2283 – 2291, (2013).
21 Kuo, D., Kriven, W.M.: A strong and damage-tolerant oxide laminate, J. Am. Ceram. Soc., 80, [9], 2421 – 2424, (1997).
22 Sánchez-Herencia, A.J.: Water based colloidal processing of ceramic laminates, Key Eng. Mater., 333, 39 – 48, (2007).
23 Marshall, D.B., Ratto, J.J., Lange, F.F.: Enhanced fracture toughness in layered microcomposites of ce-zrO2 and Al2O3, J. Am. Ceram. Soc., 74, [12], 2979 – 2987, (1991).
24 Bermejo, R., Torres, Y., Sánchez-Herencia, A.J., Baudín, C., Anglada, M., Llanes, L.: Residual stresses, strength and toughness of laminates with different layer thickness ratios, Acta Mater., 54, [18], 4745 – 4757, (2006).
25 Hadraba, H., Klimes, J., Maca, K.: Crack propagation in layered Al2O3/ZrO2 composites prepared by electrophoretic deposition, J. Mater. Sci., 42, [15], 6404 – 6411, (2007).
26 Chlup, Z., Hadraba, H., Slabáková, L., Drdlík, D., Dlouhý, I.: Fracture behaviour of alumina and zirconia thin layered laminate, J. Eur. Ceram. Soc., 32, [9], 2057 – 2061, (2012).
27 Nicolaidis, I., Gurauskis, J., Baudín, C., Moreno, R., Sánchez-Herencia, A.J.: Forming of ceramic laminates comprising thin layers of a few particles, J. Am. Ceram. Soc., 91, [7], 2124 – 2129, (2008).
28 Ferrari, B., Bueno, S., Baudín, C.: Consolidation of flaw-tolerant layered structures by the insertion of reactive layers, Bol. Soc. Esp. Ceram, 48, [5], 261 – 266, (2009).
29 Requena, J., Moreno, R., Moya, J.S.: Obtained by slip casting, J. Am. Ceram. Soc., 13, [72], 1511 – 1513, (1989).
30 Bermejo, R., Torres, Y., Baudín, C., Sánchez-Herencia, A.J., Pascual, J., Anglada, M., Llanes, L.: Threshold strength evaluation on an Al2O3-ZrO2 multilayered system, J. Eur. Ceram. Soc., 27, [2 – 3], 1443 – 1448, (2007).
31 E.C. for Standardization, EN 623 – 2: Advanced technical ceramics - Monolithic ceramics - General and textural properties - Part 2: Determination of density and porosity, 1993.
32 E.C. for Standardization, EN 843 – 4: Advanced technical ceramics - Monolithic ceramics - Mechanical properties at room temperature - Part 4: Vickers, Knoop and Rockwell superficial hardness, 1994.
33 E.C. for Standardization, EN 843 – 1: Advanced technical ceramics - Monolithic ceramics - Mechanical properties at room temperature – Part 1: Determination of flexural strength, 10 (1995).
34 E.C. for Standardization, EN 843 – 5: Advanced technical ceramics – Mechanical properties of monolithic ceramics at room temperature - Part 5: Statistical analysis, 2006.
35 Ohji, T.: Testing and evaluation of mechanical properties, Handbook of Advanced Ceramics, 2nd Edition, Chapter 9.2, p. 633 – 650 (2013).
36 E.C. for Standardization, EN 658 – 3: Advanced technical ceramics – Mechanical properties of ceramic composites at room temperature - Part 3: Determination of flexural strength, 2002.
37 Chartier, T., Merle, D., Besson, J.L.: Laminar ceramic composites, J. Eur. Ceram. Soc., 15, [2], 101 – 107, (1995).
38 Tang, D., Lim, H.B., Lee, K.J., Lee, C.H., Cho,W.S.: Evaluation of mechanical reliability of zirconia-toughened alumina composites for dental implants, Ceram. Int., 38, [3], 2429 – 2436, (2012).
39 Casellas, D., Nagl, M.M., Llanes, L., Anglada, M.: Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects, J. Mater. Process. Technol., 143–144, [1], 148 – 152, (2003).
40 Spriggs, R.M., Vasilos, T.: Effect of grain size on transverse bend strength of alumina and magnesia, J. Am. Ceram. Soc., 46, [5], 224 – 228, (1963).
41 Hillman, C., Suo, Z., Lange, F.F.: Cracking of laminates subjected to biaxial tensile stresses, J. Am. Ceram. Soc., 79, 160, (1996).
Copyright
Göller Verlag GmbH