Articles
All articles | Recent articles
Controlled Preparation of Red-Light-Emitting (Y0.95Eu0.05)2O3 Phosphors and Vacuum Sintering of Transparent (Y0.95Eu0.05)2O3 Ceramics
B. Lu1,2,3, H.M. Cheng1,2,3, Z.G. Sun4, L. Wang4, J.G. Pan1,2,3, H.B. Chen1,2,3
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
3 State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo 315211, China
4 Beijing Hamamatsu Photonics Technology Co., Ltd, Langfang 065001, China
received August 2, 2017, received in revised form October 13, 2017, accepted November 8, 2017
Vol. 9, No. 1, Pages 53-60 DOI: 10.4416/JCST2017-00066
Abstract
A facile co-precipitation technique was employed for preparing well-dispersed (Y0.95Eu0.05)2O3 phosphors using ammonium hydrogen carbonate (AHC) as the precipitant, followed by vacuum sintering at the relatively low temperature of 1700 °C for 4 h to produce transparent (Y0.95Eu0.05)2O3 ceramics. The transparent (Y0.95Eu0.05)2O3 ceramic, with fine grain sizes of 12 – 14 μm, has a substantially smaller bandgap (∼ 4.45 eV) than the corresponding phosphor. Both the oxide powder and the transparent ceramic exhibit the typical 5D0→7F2 transition at ∼ 613 nm, corresponding to the Eu3+ emission upon UV excitation into the charge transfer (CT) band arising from the electronic transition from the 2p orbital of O2- to the 4f orbital of Eu3+. The light output of the sintered bodies can be significantly improved with heat treatment, which results in much higher outputs compared with commercial single-crystal CdWO4. High-temperature densification and post-annealing processes significantly improved the photoluminescence/photoluminescence excitation (PL/PLE) intensities and external quantum efficiencies, and also led to shorter fluorescence lifetimes of the samples.
Download Full Article (PDF)
Keywords
Transparent ceramics, phosphor, yttria, optical property, Eu3+ doping
References
1 Som, S., Das, S., Dutta, S., Visser, H.G., Pandey, M.K., Kumar, P., Dubey, R.K., Sharma, S.K.: Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis, RSC Adv., 5, 70887 – 70898, (2015).
2 Ferrari, J.L., Cebim, M.A., Pires, A.M., Couto dos Santos, M.A., Savolos, M.R.: Y2O3:Eu3+ (5 mol%) with Ag nanoparticles prepared by citrate precursor, J. Solid State Chem., 183, 2110 – 2115, (2010).
3 Yoo, H.S., Jang, H.S., Im, W.B., Kang, J.H., Jeon, D.Y.: Particle size control of a monodisperse spherical Y2O3:Eu3+ phosphor and its photoluminescence properties, J. Mater. Res., 22, 2017 – 2024, (2007).
4 Adam, J., Metzger, W., Koch, M., Rogin, P., Coenen, T., Atchison, J.S., Konig, P.: Light emission intensities of luminescent Y2O3:Eu and Gd2O3:Eu particles of various sizes, Nanomaterials, 7, 26, (2017).
5 Wakefield, G., Holland, E., Dobson, P.J., Hutchison, J.L.: Luminescence properties of nanocrystalline Y2O3:Eu, Adv. Mater., 13, 1557 – 1560, (2001).
6 Byeon, S.H., Ko, M.-G., Park, J.-C., Kim, D.K.: Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping, Chem. Mater., 14, 603 – 608, (2002).
7 Lu, B., Li, J.-G., Sun, X.D., Sakka, Y.: Fabrication and characterization of transparent (Y0.98-xTb0.02Eux)2O3 ceramics with color-tailorable emission, J. Am. Ceram. Soc., 98, 3877 – 3883, (2015).
8 Poma, P.Y., Kumar, K.U., Vermelho, M.V.D., Serivalsatit, K., Roberts, S.A., Kucera, C.J., Ballato, J., Jacobsohn, L.G., Jacinto, C.: Luminescence and thermal lensing characterization of singly Eu3+ and Tm3+ doped Y2O3 transparent ceramics, J. Lumin., 161, 306 – 312, (2015).
9 Nishiura, S., Tanabe, S., Fujioka, K., Fujimoto, Y.: Properties of transparent Ce:YAG ceramic phosphors for white LED, Opt. Mater., 33, 688 – 691, (2011).
10 Lu, S.Z., Yang, Q.H., Wang, Y.G., Li, Y.H., Huang, D.D.: Luminescent properties of Eu:Y1.8La0.2O3 transparent ceramics for potential white LED applications, Opt. Mater., 35, 718 – 721, (2013).
11 Lamiri, L., Guerbous, L., Samah, M., Boukerika, A., Ouhenia, S.: Structural, morphological and steady state photoluminescence spectroscopy studies of red Eu3+-doped Y2O3 nanophosphors prepared by the sol-gel method, Lumin., 30, 1336 – 1343, (2015).
12 Boukerika, A., Guerbous, L.: Annealing effects on structural and luminescence properties of red Eu3+-doped Y2O3 nanophosphors prepared by sol-gel method, J. Lumin., 145, 148 – 153, (2014).
13 Dhak, P., Patel, S.K.S., Kim, M.-K., Lee, J.-H., Kim, M., Kim, S.K.: Hydrothermal synthesis, structural analysis and room-temperature ferromagnetism of Y2O3:Co2+ nanorods, J. Magn. Magn. Mater., 408, 67 – 72, (2016).
14 Wang, H.B., Qian, C., Yi, Z.G., Rao, L., Liu, H.R., Zeng, S.J.: Hydrothermal synthesis and tunable multicolor upconversion emission of cubic phase Y2O3 nanoparticles, Adv. Cond. Mat. Phys., 2013, 347406, (2013).
15 Gao, L.H., Wang, G.F., Zhu, H.L., Zhou, W.J., Ou, G.F.: Hydrothermal synthesis of Y2O3 coated Y2O3:Eu3+ nanotubes for enhanced photoluminescence properties, Mater. Res. Bull., 70, 876 – 880, (2015).
16 Li, S.S., Liu, B.L., Li, J., Zhu, X.W., Liu, W.B., Pan, Y.B., Guo, J.K.: Synthesis of yttria nano-powders by the precipitation method: The influence of ammonium hydrogen carbonate to metal ions molar ratio and ammonium sulfate addition, J. Alloy. Compd., 678, 258 – 266, (2016).
17 Saravanan, T., Raj, S.G., Chandar, N.R.K., Jayavell, R.: Synthesis, optical and electrochemical properties of Y2O3 nanoparticles prepared by co-precipitation method, J. Nanosci. Nanotechnol., 15, 4353 – 4357, (2015).
18 Lu, B., Li, J.-G., Sakka, Y.: Controlled processing of (Gd,Ln)2O3:Eu (Ln=Y, Lu) red phosphor particles and compositional effects on photoluminescence, Sci. Technol. Adv. Mater., 14, 064202, (2013).
19 Wang, N.L., Zhang, X.Y., Bai, Z.H., Liu, Q.S., Lu, L.P., Mi, X.Y., Sun, H.Y., Wang, X.C.: Carbonate-precipitation synthesis of Yb3+:Y2O3 nanopowders and its characteristics, Powder Technol., 203, 458 – 461, (2010).
20 Zhu, Q., Li, J.-G., Li, X.D., Sun, X.D.: Effects of Y3+ doping on phase structure and photoluminescence properties of (Gd0·95-xYxEu0·05)2O3 red phosphors, Sci. Technol. Adv. Mater., 12, 055001, (2011).
21 Li, J.-G., Li, X.D., Sun, X.D., Ikegami, T., Ishigaki, T.: Uniform colloidal spheres for (Y1-xGdx)2O3 (x=0 – 1): Formation mechanism, compositional impacts, and physicochemical properties of the oxides, Chem. Mater., 20, 2274 – 2281, (2008).
22 Li, J.-G., Li, X.D., Sun, X.D., Ishigaki, T.: Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping, J. Phys. Chem. C, 112, 11707 – 11716, (2008).
23 Song, L., Li, J.W., Zhang, M., Zhang, B.H., Wang, J.X., Li, Z.H.: Fabrication of Y2O3 microspheres by homogeneous precipitation method, Micro Nano Lett., 12, 241 – 216, (2017).
24 Chen, W.F., Zhou, M.P., Liu, Y., Fu, S.L., Liu, Y., Wang, Y.P., Li, Z.Z., Li, Y.X., Li, Y.Y., Yu, L.X.: Uniform octahedral-shaped Y2O3:Eu3+ submicron single crystals: Solid-state synthesis, formation mechanism and photoluminescence property, J. Alloy. Compd., 656, 764 – 770, (2016).
25 Chen, X.D., Liu, N.A., Mei, G.J., Yu, M.M.: Recycling Y and eu from waste fluorescent powder and high temperature solid-state synthesis of Y2O3:Eu phosphors, Minerals, 7, 44, (2017).
26 Al-Mamun, S.A., Ishigaki, T.: Influence of hydrogen peroxide addition on photoluminescence of Y2O3:Eu3+ nanophosphors prepared by laser ablation in water, J. Am. Ceram. Soc., 97, 1083 – 1090, (2014).
27 Cai, S., Lu, B., Chen, H.B., Pan, J.G., Chen, P.: Homogeneous (Lu1-xInx)2O3 (x=0 – 1) solid solutions: Controlled synthesis, structure features and optical properties, Powder Technol., 317, 224 – 229, (2017).
28 Li, W.J., Zhou, S.M., Liu, N., Lin, H., Teng, H., Li, Y.K., Hou, X.R., Jia, T.T.: Synthesis and spectral properties of Yb3+/Ho3+ co-doped yttria 2 μm transparent ceramics, Mater. Lett., 64, 1344 – 1346, (2010).
29 Huang, Z., Guo, W., Liu, Y., Huang, Q.F., Tang, F., Cao, Y.G.: Synthesis of Nd:Y2O3 nanopowders leading to transparent ceramics, Mater. Chem. Phys., 128, 44 – 49, (2011).
30 Lu, B., Wang, Y., Sun, X.D., Sun, T.: Synthesis of Sc2O3 nanopowders and fabrication of transparent, two-step sintered Sc2O3 ceramics, Adv. Appl. Ceram., 111, 389 – 392, (2012).
31 Wang, Y., Lu, B., Sun, X.D., Sun, T., Xu, H.: Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics, Adv. Appl. Ceram., 110, 95 – 98, (2011).
32 Ganjkhanlou, Y., Kazemzad, M., Hessari, F.A.: Chromaticity dependence on eu concentration in Y2O3:Eu nanopowders, Nano, 5, 111 – 116, (2010).
33 Lu, B., Li, J.-G., Suzuki, TS., Estili, M., Liu, W.G., Sun, X.D., Sakka, Y.: Controlled synthesis of layered rare-earth hydroxide nanosheets leading to highly transparent (Y0.95Eu0.05)2O3 ceramics, J. Am. Ceram. Soc., 98, 1413 – 1422, (2015).
34 Lu, B., Li, J.-G., Suzuki, T.S., Tanaka, H., Sun, X.D., Sakka, Y.: Effects of gd substitution on sintering and optical properties of highly transparent (Y0.95-xGdxEu0.05)2O3 ceramics, J. Am. Ceram. Soc., 98, 2480 – 2487, (2015).
35 Panchula, M.L., Akinc, M.: Morphology of lanthanum carbonate particles prepared by homogeneous precipitation, J. Eur. Ceram. Soc., 16, 833 – 841, (1996).
36 Zhang, P., Navrotsky, A., Guo, B., Kennedy, I., Clark, A.N., Lesher, C., Liu, Q.Y.: Energetics of cubic and monoclinic yttrium oxide polymorphs: Phase transitions, surface enthalpies, and stability at the nanoscale, J. Phys. Chem. C, 112, 932 – 938, (2008).
37 Hagfeldt, A., Gratzel, M.: Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95, 49 – 68, (1995).
38 Achutaramayya, G., Scott W.: Measurement of dihedral angles by scanning electron microscopy, J. Am. Ceram. Soc., 56, 230 – 231, (1973).
39 Ikegami, T., Kotani, K., Eguchi, K.: Some roles of MgO and TiO2 in densification of a sinterable alumina, J. Am. Ceram. Soc., 70, 885 – 890, (1987).
40 Concas, G., Spano, G., Zych, E., Trojan-Piegza, J.: Nano- and microcrystalline Lu2O3:Eu phosphors: variations in occupancy of C2 and S6 sites by Eu3+ ions, J. Phys.: Condens. Matter, 17, 2594 – 2604, (2005).
Copyright
Göller Verlag GmbH