Articles
All articles | Recent articles
Reinforcement Mechanisms in Yttria-Ceria-Co-Stabilized Zirconia-Alumina-Strontium Hexaaluminate Composite Ceramics
F. Kern, A. Gommeringer
University of Stuttgart, Institute for Manufacturing Technologies of Ceramic Components and Composites, Allmandring 7B, D-70569 Stuttgart, Germany
received June 30, 2017, , accepted September 12, 2017
Vol. 9, No. 1, Pages 93-98 DOI: 10.4416/JCST2017-00046
Abstract
Composite ceramics with 1 mol% yttria and 6 mol% ceria co-stabilized zirconia matrix were reinforced with 10 vol% alumina and 10 vol% in situ-formed strontium hexaaluminate. Samples were shaped by means of slip casting in plaster molds and sintered in air for 3 – 72 h at 1500 °C. Full density and highest fracture resistance were achieved in overfired material while the maximum strength of 900 MPa was obtained at a dwell of 12 h. The high fracture resistance up to 10.4 MPa√m results from contributions of different reinforcement mechanisms: microcracking, crack bridging, crack deflection and – predominantly – transformation toughening.
Download Full Article (PDF)
Keywords
Zirconia, platelets, microstructure, mechanical properties
References
1 Garvie, R.C., Hannink, R.H., Pascoe, R. T.: Ceramic steel, Nature, 258, 703 – 704, (1975).
2 Hannink, R.H.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, [3], 461 – 87, (2000).
3 Chevalier, J., Drouin, J.M., Cales, B.: Low-temperature aging of Y-TZP ceramics, J. Am. Ceram. Soc., 82, [8], 2150 – 54, (1999).
4 Vleugels, J., Xu, T., Huang, S., Kan, Y., Wang, P., Li, L., Van der Biest, O.: Characterization of (Nd,Y)-TZP ceramics prepared by a colloidal suspension coating technique, J. Eur. Ceram. Soc., 27, 1339 – 1343, (2007).
5 Kern, F: Ytterbia-neodymia-costabilized TZP—Breaking the limits of strength-toughness correlations for zirconia? J. Eur. Ceram. Soc., 33, 965 – 73, (2013).
6 Lin, J.-D., Duh J.-G.: Correlation of mechanical properties and composition in tetragonal CeO2-Y2O3-ZrO2 ceramic system, Mat. Chem. Phys., 78, 246 – 252, (2003).
7 Lin, J.-D., Duh J.-G.: Fracture toughness and hardness of ceria- and yttria-doped tetragonal zirconia ceramics, Mat. Chem. Phys., 78, 253 – 261, (2003).
8 Swain, M.V., Rose, L.R.F.: Strength limitations of transformation-toughened zirconia alloys, J. Am. Ceram. Soc., 69, [7], 511 – 18, (1986).
9 Kern, F., Gadow, R.: Thermoplastic forming of ceramic electrode substrates for deep brain stimulation, 24. Stuttgarter Kunststoffkolloquium Proceedings, IKT, University of Stuttgart, Stuttgart 2015.
10 Tsukuma, K., Ueda, K., Shimada, K.: Strength and fracture toughness of isostatically hot-pressed composites of Al2O3 and Y2O3-partially-stabilized ZrO2, J. Am. Ceram. Soc., 68, [1], C4 – C5, (1985).
11 Cutler, R.A., Mayhew, R.J., Prettiman K.M., Virkar, A.: High-toughness Ce-TZP/Al2O3 ceramics with improved hardness and strength, J. Am. Ceram. Soc., 74, [1], 179 – 186, (1991).
12 Kern, F: A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium- or lanthanum hexaaluminate precipitates, J. Eur. Ceram. Soc., 34, [2], 413 – 23, (2013).
13 Touaiher, I., Saadaoui, M., Chevalier, J., Reveron, H.: Effect of loading configuration on strength values in a highly transformable zirconia-based composite, Dental Materials, 32, 211 – 219, (2016).
14 Kern, F., Gadow, R.: Tough to brittle transition with increasing grain size in 3Yb-TZP ceramics manufactured from stabilizer coated nanopowders, J. Jap. Ceram. Soc., 124, 1083 – 1089, (2016).
15 Yuan, Z.X., Vleugels, J., Van der Biest, O.: Preparation of Y2O3-coated ZrO2 powder by suspension drying, J. Mat. Sci. Lett., 19, 359 – 61, (2000).
16 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II, Strength method, J. Am. Ceram. Soc., 64, (9), 539 – 543, (1981).
17 Braun, L.M., Bennison, S.J., Lawn, B.R: Objective evaluation of short-crack toughness curves using indentation flaws: Case study on alumina-based ceramics, J. Am. Ceram. Soc., 75, [11], 3049 – 57, (1992).
18 Dransmann, G.W., Steinbrech, R.W., Pajares, A., Guiberteau, F., Dominguez-Rodriguez, A., Heuer, A.: Indentation studies on Y2O3-stabilized ZrO2: II, toughness determination from stable growth of indentation-induced cracks, J. Am. Ceram. Soc., 77, [5], 1194 – 1201, (1994).
19 Toraya, H., Yoshimura, M., Somiya, S.: Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, [6], C119 – 21, (1984).
20 Kosmac, T., Wagner, R., Claussen, N.: X-ray determination of transformation depths in ceramics containing tetragonal ZrO2, J. Am. Ceram. Soc., 64, [4], C72 – 3, (1981).
21 McMeeking, R.M., Evans, A.G.: Mechanics of transformation-toughening in brittle materials, J. Am. Ceram. Soc., 65, [5], 242 – 46, (1982).
22 Kelly, P.M., Rose, L.R.F.: The martensitic transformation of ceramics – its role in transformation toughening, Progr. Mat. Sci., 67, 463 – 557, (2002).
23 Kelly, J., Denry, I.D.: Stabilized zirconia as a structural ceramic: an overview, Dental Materials, 24, 289 – 298, (2008).
24 De Aza, A.H., Chevalier, J., Fantozzi, G., Schehl, M., Torrecillas, R.: Slow-crack-growth behavior of zirconia-toughened alumina ceramics processed by different methods, J. Am. Ceram. Soc., 86, 115 – 120, (2003).
25 Taya, M., Hayashi, S., Kobayashi, A.S., Yoon, H.S.: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc., 73, [5], 1382 – 1391, (1990).
26 Becher, P.F., Hsueh, C-H., Angelini, P., Tiegs, T.N.: Toughening behavior in whisker-reinforced ceramic matrix composites, J. Am. Ceram. Soc., 71, [12], 1050 – 61, (1988).
27 Kingery, D., Bowen, H.K., Uhlmann, D.R.: Introduction to ceramics, 2nd ed., Wiley, New York, 1976.
28 Papst, W., Gregorova, E.: Effective thermal and thermoelastic properties of alumina, zirconia and alumina-zirconia composite ceramics, in: New developments in materials science research, Nova Science Publishers Inc., New York, USA, 2007.
29 Schmid, C., Lucchini, E., Sbaizero, O., Maschio, S.: The synthesis of calcium or strontium hexaluminate added ZTA composite ceramics, J. Eur. Ceram. Soc., 19, 1741 – 1746, (1999).
30 He, M.H., Evens, A.G., Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials – the role of residual stresses, Int. J. Solids Struct.,31, [24], 3443 – 55, (1994).
31 Chen, P.L., Chen, I.W.: In-situ alumina/aluminate platelet composites, J. Am. Ceram. Soc., 75, [9], 2610 – 2612, (1992).
32 Evans, A.G.: Perspective on the development of high-toughness ceramics, J. Am. Ceram. Soc., 73, [2], 187 – 205, (1990).
33 Amazigo, J.C., Budiansky, B.: Interaction of particulate and transformation toughening, J. Mech. Phys. Solids, 36, 581 – 595, (1988).
Copyright
Göller Verlag GmbH