• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Reinforcement Mechanisms in Yttria-Ceria-Co-Stabilized Zirconia-Alumina-Strontium Hexaaluminate Composite Ceramics

F. Kern, A. Gommeringer

University of Stuttgart, Institute for Manufacturing Technologies of Ceramic Components and Composites, Allmandring 7B, D-70569 Stuttgart, Germany

received June 30, 2017, , accepted September 12, 2017

Vol. 9, No. 1, Pages 93-98   DOI: 10.4416/JCST2017-00046

Abstract

Composite ceramics with 1 mol% yttria and 6 mol% ceria co-stabilized zirconia matrix were reinforced with 10 vol% alumina and 10 vol% in situ-formed strontium hexaaluminate. Samples were shaped by means of slip casting in plaster molds and sintered in air for 3 – 72 h at 1500 °C. Full density and highest fracture resistance were achieved in overfired material while the maximum strength of 900 MPa was obtained at a dwell of 12 h. The high fracture resistance up to 10.4 MPa√m results from contributions of different reinforcement mechanisms: microcracking, crack bridging, crack deflection and – predominantly – transformation toughening.

Download Full Article (PDF)

Keywords

Zirconia, platelets, microstructure, mechanical properties

References

1 Garvie, R.C., Hannink, R.H., Pascoe, R. T.: Ceramic steel, Nature, 258, 703 – 704, (1975).

2 Hannink, R.H.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, [3], 461 – 87, (2000).

3 Chevalier, J., Drouin, J.M., Cales, B.: Low-temperature aging of Y-TZP ceramics, J. Am. Ceram. Soc., 82, [8], 2150 – 54, (1999).

4 Vleugels, J., Xu, T., Huang, S., Kan, Y., Wang, P., Li, L., Van der Biest, O.: Characterization of (Nd,Y)-TZP ceramics prepared by a colloidal suspension coating technique, J. Eur. Ceram. Soc., 27, 1339 – 1343, (2007).

5 Kern, F: Ytterbia-neodymia-costabilized TZP—Breaking the limits of strength-toughness correlations for zirconia? J. Eur. Ceram. Soc., 33, 965 – 73, (2013).

6 Lin, J.-D., Duh J.-G.: Correlation of mechanical properties and composition in tetragonal CeO2-Y2O3-ZrO2 ceramic system, Mat. Chem. Phys., 78, 246 – 252, (2003).

7 Lin, J.-D., Duh J.-G.: Fracture toughness and hardness of ceria- and yttria-doped tetragonal zirconia ceramics, Mat. Chem. Phys., 78, 253 – 261, (2003).

8 Swain, M.V., Rose, L.R.F.: Strength limitations of transformation-toughened zirconia alloys, J. Am. Ceram. Soc., 69, [7], 511 – 18, (1986).

9 Kern, F., Gadow, R.: Thermoplastic forming of ceramic electrode substrates for deep brain stimulation, 24. Stuttgarter Kunststoffkolloquium Proceedings, IKT, University of Stuttgart, Stuttgart 2015.

10 Tsukuma, K., Ueda, K., Shimada, K.: Strength and fracture toughness of isostatically hot-pressed composites of Al2O3 and Y2O3-partially-stabilized ZrO2, J. Am. Ceram. Soc., 68, [1], C4 – C5, (1985).

11 Cutler, R.A., Mayhew, R.J., Prettiman K.M., Virkar, A.: High-toughness Ce-TZP/Al2O3 ceramics with improved hardness and strength, J. Am. Ceram. Soc., 74, [1], 179 – 186, (1991).

12 Kern, F: A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium- or lanthanum hexaaluminate precipitates, J. Eur. Ceram. Soc., 34, [2], 413 – 23, (2013).

13 Touaiher, I., Saadaoui, M., Chevalier, J., Reveron, H.: Effect of loading configuration on strength values in a highly transformable zirconia-based composite, Dental Materials, 32, 211 – 219, (2016).

14 Kern, F., Gadow, R.: Tough to brittle transition with increasing grain size in 3Yb-TZP ceramics manufactured from stabilizer coated nanopowders, J. Jap. Ceram. Soc., 124, 1083 – 1089, (2016).

15 Yuan, Z.X., Vleugels, J., Van der Biest, O.: Preparation of Y2O3-coated ZrO2 powder by suspension drying, J. Mat. Sci. Lett., 19, 359 – 61, (2000).

16 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II, Strength method, J. Am. Ceram. Soc., 64, (9), 539 – 543, (1981).

17 Braun, L.M., Bennison, S.J., Lawn, B.R: Objective evaluation of short-crack toughness curves using indentation flaws: Case study on alumina-based ceramics, J. Am. Ceram. Soc., 75, [11], 3049 – 57, (1992).

18 Dransmann, G.W., Steinbrech, R.W., Pajares, A., Guiberteau, F., Dominguez-Rodriguez, A., Heuer, A.: Indentation studies on Y2O3-stabilized ZrO2: II, toughness determination from stable growth of indentation-induced cracks, J. Am. Ceram. Soc., 77, [5], 1194 – 1201, (1994).

19 Toraya, H., Yoshimura, M., Somiya, S.: Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 67, [6], C119 – 21, (1984).

20 Kosmac, T., Wagner, R., Claussen, N.: X-ray determination of transformation depths in ceramics containing tetragonal ZrO2, J. Am. Ceram. Soc., 64, [4], C72 – 3, (1981).

21 McMeeking, R.M., Evans, A.G.: Mechanics of transformation-toughening in brittle materials, J. Am. Ceram. Soc., 65, [5], 242 – 46, (1982).

22 Kelly, P.M., Rose, L.R.F.: The martensitic transformation of ceramics – its role in transformation toughening, Progr. Mat. Sci., 67, 463 – 557, (2002).

23 Kelly, J., Denry, I.D.: Stabilized zirconia as a structural ceramic: an overview, Dental Materials, 24, 289 – 298, (2008).

24 De Aza, A.H., Chevalier, J., Fantozzi, G., Schehl, M., Torrecillas, R.: Slow-crack-growth behavior of zirconia-toughened alumina ceramics processed by different methods, J. Am. Ceram. Soc., 86, 115 – 120, (2003).

25 Taya, M., Hayashi, S., Kobayashi, A.S., Yoon, H.S.: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc., 73, [5], 1382 – 1391, (1990).

26 Becher, P.F., Hsueh, C-H., Angelini, P., Tiegs, T.N.: Toughening behavior in whisker-reinforced ceramic matrix composites, J. Am. Ceram. Soc., 71, [12], 1050 – 61, (1988).

27 Kingery, D., Bowen, H.K., Uhlmann, D.R.: Introduction to ceramics, 2nd ed., Wiley, New York, 1976.

28 Papst, W., Gregorova, E.: Effective thermal and thermoelastic properties of alumina, zirconia and alumina-zirconia composite ceramics, in: New developments in materials science research, Nova Science Publishers Inc., New York, USA, 2007.

29 Schmid, C., Lucchini, E., Sbaizero, O., Maschio, S.: The synthesis of calcium or strontium hexaluminate added ZTA composite ceramics, J. Eur. Ceram. Soc., 19, 1741 – 1746, (1999).

30 He, M.H., Evens, A.G., Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials – the role of residual stresses, Int. J. Solids Struct.,31, [24], 3443 – 55, (1994).

31 Chen, P.L., Chen, I.W.: In-situ alumina/aluminate platelet composites, J. Am. Ceram. Soc., 75, [9], 2610 – 2612, (1992).

32 Evans, A.G.: Perspective on the development of high-toughness ceramics, J. Am. Ceram. Soc., 73, [2], 187 – 205, (1990).

33 Amazigo, J.C., Budiansky, B.: Interaction of particulate and transformation toughening, J. Mech. Phys. Solids, 36, 581 – 595, (1988).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH