Articles
All articles | Recent articles
An Overview of the Functional Ceramic and Composite Materials for Microbiological Fuel Cells
A.S. Galushko1, A.G. Ivanova2, M.S. Masalovich2, O.A. Zagrebelnyy2, G.G. Panova1, I.Yu. Kruchinina2,3, O.A. Shilova2,3
1 Agrophysical Research Institute, Grazhdanskiy pr., 14, Saint Petersburg, 195220, Russia
2 Institute of Silicate Chemistry of Russian Academy of Sciences, nab. Makarova, 2, St. Petersburg, 199034, Russia
3 Saint Petersburg State Electrotechnical University "LETI", ul. Prof. Popova, 5, St. Petersburg, 197376, Russia
received June 2, 2017, received in revised form August 18, 2017, accepted November 8, 2017
Vol. 8, No. 4, Pages 433-454 DOI: 10.4416/JCST2017-00041
Abstract
This review covers the contemporary state of a problem concerning the selection and usage of ceramic materials for fabricating the basic functional components (anode, cathode and membrane-separator) of microbiological fuel cells (MFCs). Electrogenesis on the surface of electrodes prepared from ceramic materials is analysed. The electrochemical and catalytic processes taking place on the surface of ceramic and composite electrode materials, functions and peculiarities of the membrane-separator structure and conductivity are evaluated in detail for the first time. The advantages and drawbacks of using ceramic materials for the fabrication of functional components of MFCs and the methods of their synthesis are analysed.
Download Full Article (PDF)
Keywords
Microbiological fuel cells, bioelectrogenesis, ceramic and composite anode materials, ceramic and composite cathode materials, ceramic and composite separating membrane
References
1 Rabaey, K., Verstraete, W.: Microbial fuel cells: Novel biotechnology for energy generation, Trends Biotechnol., 23, [6], 291 – 298, (2005), .
2 Scott, K., Yu, E.H. (Ed.): Microbial electrochemical and fuel cells. Fundamentals and applications, 1st edition. Woodhead Publishing, 2015.
3 Ponomareva, A.A., Ivanova, A.G., Shilova, O.A., Kruchinina, I.Yu.: Current state and prospects of manufacturing and operation of methane-based fuel cells (review), Glass Phys. Chem., 42, [1], 1 – 19 (2016), .
4 Ishihara, T. (Ed): Perovskite oxide for solid oxide fuel cells. Chapter 2. Overview of intermediate-temperature solid oxide fuel cells, LLC, Springer Science Business Media, 17 – 43, 2009, .
5 Guan, W.B., Zhai, H.J., Jin, L., Li, T.S., Wang, W.G.: Effect of contact between electrode and interconnect on performance of SOFC stacks, Fuel Cells, 11, 445 – 450, (2011), .
6 Kalinina, M.V., Morozova, L.V., Egorova, T.L., Arsent'ev, M.Yu., Drozdova, I.A., Shilova, O.A.: Synthesis and physicochemical properties of a solid oxide nanocomposite based on a ZrO2-Y2O3-Gd2O3-MgO system, Glass Phys. Chem., 42, [5], 505 – 511, (2016), .
7 Ramachandran, R., Chen, S-M., Kumar, G.P.G.: Enhancement of different fabricated electrode materials for microbial fuel cell applications: an overview, Int. J. Electrochem. Sci., 10, 7111 – 7137, (2015).
8 Yousefi, V., Mohebbi-Kalhori, D., Samimi, A.: Ceramic-based microbial fuel cells (MFCs): A review, Int. J. Hydrogen Energ., 42, [3], 1672 – 1690, (2017), .
9 Winfield, J., Gajda, I., Greenman, J., Ieropoulos, I.: A review into the use of ceramics in microbial fuel cells, Bioresource Technol., 215, 296 – 303, (2016), .
10 Logan, B.E. Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K.: Microbial fuel cells: methodology and technology, Environ. Sci. Technol., 40, 5181 – 5192, (2006).
11 Logan, B.E., Regan, J.M.: Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14, 512 – 518, (2006).
12 Bond, D.R., Lovley, D.R.: Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548 – 1555, (2003).
13 Rozendal, R.A., Hamelers, H.V., Buisman, C.J.: Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol., 40, 5206 – 5211, (2006).
14 Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., Herrmann, I.: Challenges and constraints of using oxygen cathodes in microbial fuel cells, Environ. Sci. Technol., 40, 5193 – 5199, (2006).
15 Rahimnejad, M., Bakeri, G., Ghasemi, M., Zirepour, A.: A review on the role of proton exchange membrane on the performance of microbial fuel cell, Polym. Adv. Technol., 25, 1426 – 1432, (2014).
16 Kim, J.R., Cheng, S., Oh, S.E., Logan, B.E.: Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol., 41, 1004 – 1009, (2007).
17 Rozendal, R.A., Hamelers, H.V., Molenkamp, R.J., Buisman, C.J.: Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes, Water Res., 41, 1984 – 1994, (2007).
18 Rozendal, R.A., Sleutels, T.H., Hamelers, H.V., Buisman, C.J.: Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater, Water Sci. Technol., 57, 1757 – 1762, (2008).
19 Arends, J.B.A., Verstraete, W.: 100 years of microbial electricity production: three concepts for the future, Microbial. Biotechnol., 5, 333 – 346, (2012).
20 Potter, M.C.: Electrical effects accompanying the decomposition of organic compounds, P. R. Soc., 84, 260 – 276, (1911).
21 Cohen, B.: The bacterial culture as an electrical half-cell, J. Bacteriol., 21, 18 – 19, (1931).
22 Davis, J.B., Yarbrough, H.F.: Preliminary experiments on a microbial fuel cell, Science, 137, 615 – 616, (1962).
23 Lewis, K.: Biochemical fuel cells, Bacteriol. Rev., 30, 101 – 113, (1966).
24 Yahiro, A.T., Lee, S.M., Kimble, D.O.: Bioelectrochemistry. I. enzyme utilizing bio-fuel cell studies, Biochim. Biophys. Acta, 88, 375 – 383, (1964).
25 Schröder, U.: Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency, Phys. Chem. Chem. Phys., 9, 2619 – 2629, (2007).
26 Philips, J., Verbeeck, K., Rabaey, K., Arends, J.B.A.: Electron transfer mechanisms in biofilms. In: Microbial electrochemical and fuel cells. Elsevier. Woodhead Publishing, Boston, Cambridge, UK, 2016.
27 Caccavo, J.F., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., Mcinerney, M.J.: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism, Appl. Environ. Microbiol., 60, 3752 – 3759, (1994).
28 Kim, B.H., Ikeda, T., Park, H.S., Hyun, M.S., Kano, K., Takagi, K., Tatsumi, H.: Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnol. Tech., 13, 475 – 478, (1999).
29 Kim, B.H., Kim, H.J., Hyun, M.S, Park, D.H.: Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol., 9, 127 – 131, (1999).
30 Kim, B.H., Park, D.H., Shin, P.K., Chang, I.S., Kim, H.J.: Mediator-less biofuel cell. U.S. Patent Application 5, 976, 719, (1999).
31 Holmes, D.E., Bond, D.R., O'Neil, R.A., Reimers, C.E., Tender, L.R., Lovley, D.R.: Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments, Microb. Ecol., 48, 178 – 190, (2004).
32 Logan, B.E.: Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7, 375 – 381, (2009).
33 Galushko, A.S., Schink, B.: Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture, Arch. Microbiol., 174, 314 – 321, (2000).
34 Thauer, R.K.: Citric-acid cycle, 50 years on. modifications and an alternative pathway in anaerobic bacteria, Eur. J. Biochem., 176, 497 – 508, (1988).
35 Kracke, F., Vassilev, I., Krömer, J.O.: Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems, Front. Microbiol., 6, 575, (2015).
36 Scott, J.H., Nealson, K.H.: A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens, J. Bacteriol., 176, 3408 – 3411, (1994).
37 Matsuda, S., Liu, H., Kouzuma, A., Watanabe, K., Hashimoto, K., Nakanishi, S.: Electrochemical gating of tricarboxylic acid cycle in electricity-producing bacterial cells of Shewanella. PLoS ONE, 8, e72901, 10.1371/journal.pone.0072901, (2013).
38 Grobbler, C., Virdis, B., Nouwens, A., Harnisch, F., Rabaey, K., Bond, P.L.: Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes, Syst. Appl. Microbiol., 38, 135 – 139, (2015).
39 Kouzuma, A., Kasai, T., Hirose, A., Watanabe, K.: Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells, Front. Microbiol., 16, 609, (2015).
40 Shi, L., Squier, T.C., Zachara, J.M., Fredrickson, J.K.: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes, Mol. Microbiol., 65, 12 – 20, (2007).
41 Coursolle, D., Baron, D.B., Bond, D.R., Gralnick, J.A.: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis, J. Bacteriol., 192, 467 – 474, (2010).
42 Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H., Fredrickson, J.K.: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proc. Natl. Acad. Sci. USA, 103, 11358 – 11363, (2006).
43 Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R.: Extracellular electron transfer via microbial nanowires, Nature, 435, 109 – 1101, (2005).
44 Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L., Lovley, D.R.: Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells, Appl. Environ. Microbiol., 72, 7345 – 7348, (2006).
45 Shi, L.A., Richardson, D.J., Wang, Z.M., Kerisit, S.N., Rosso, K.M., Zachara, J.M., Fredrickson, J.K.: The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer, Environ. Microbiol. Rep., 1, 220 – 227, (2009).
46 Leang, C., Qian, X.L., Mester, T., Lovley, D.R.: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens, Appl. Environ. Microbiol., 76, 4080 – 4084, (2010).
47 McLean, J.S., Wanger, G., Gorby, Y.A., Wainstein, M., McQuaid, J., Ishii, S.I., Bretschger, O., Beyenal, H., Nealson, K.H.: Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities, Environ. Sci. Technol., 44, 2721 – 2727, (2010).
48 Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., Sayama, M.: Electric currents couple spatially separated biogeochemical processes in marine sediment, Nature, 463, 1071 – 1074, (2010).
49 Luo, S., Guo, W., Nealson, K.H., Feng, X., He, Z.: ¹³C pathway analysis for the role of formate in electricity generation by Shewanella oneidensis MR-1 using lactate in microbial fuel cells, Sci. Rep., 12, 20941, (2016).
50 Malvankar, N.S., Yalcin, S.E., Tuominen, M.T., Lovley, D.R.: Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy, Nat. Nanotechnol., 9, 1012 – 1017, (2014).
51 Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H., El-Naggar, M.Y.: Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components, Proc. Nat. Acad. Sci. USA, 111, 12883 – 12888, (2014).
52 Xiao, K., Malvankar, N.S., Shu, C., Martz, E., Lovley, D.R, Sun, X.: Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili, Sci. Rep., 6, 23385, (2016).
53 Sure, S.K., Ackland, L.M., Torriero, A.A., Adholeya, A., Kochar, M.: Microbial nanowires: an electrifying tale, Microbiol., 162, 2017 – 2028, (2016).
54 Lovley, D.R., Malvankar, N.S.: Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function, Environ. Microbiol., 17, 2209 – 2215, (2015), .
55 Tan, Y., Adhikari, R.Y., Malvankar, N.S., Ward, J.E., Nevin, K.P., Woodard, T.L., Smith, J.A., Snoeyenbos-West, O.L., Franks, A.E., Tuominen, M.T., Lovley, D.R.: The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter, Front. Microbiol., 7, 980, (2016), .
56 Chung, Y., Hyun, K.H., Kwon, Y.: Fabrication of a biofuel cell improved by the π-conjugated electron pathway effect induced from a new enzyme catalyst employing terephthalaldehyde, Nanoscale, 8, 1161 – 1168, (2016), .
57 von Canstein, H., Ogawa, J., Shimizu, S., Lloyd, J.R.: Secretion of flavins by Shewanella species and their role in extracellular electron transfer, Appl. Environ. Microbiol., 74, 615 – 623, (2008).
58 Reimers, C.E., Tender, L.M., Fertig, S., Wang, W.: Harvesting energy from the marine sediment-water interface, Environ. Sci. Technol., 35, 192 – 195, (2001).
59 Koch, C., Harnisch, F.: Is there a specific ecological niche for electroactive microorganisms?, ChemElectroChem., 3, 1282 – 1295, (2016).
60 Fedorovich, V., Knighton, M.C., Pagaling, E., Ward, F.B., Free, A., Goryanin, I.: Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell, Appl. Environ. Microbiol., 75, 7326 – 7334, (2009).
61 Rotaru, A.E., Woodard, T.L., Nevin, K.P., Lovley D.R.: Link between capacity for current production and syntrophic growth in Geobacter species, Front. Microbiol., 21, 744, (2015).
62 Wrighton, K.C., Thrash, J.C., Melnyk, R.A., Bigi, J.P., Byrne-Bailey, K.G., Remis, J.P., Schichnes, D., Auer, M., Chang, C.J., Coates, J.D.: Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell, Appl. Environ. Microbiol., 77, 7633 – 7639, (2011), .
63 Koch, C., Harnisch, F.: What is the essence of microbial electroactivity?, Front. Microbiol., 7, 1890, (2016).
64 Gregory, K.B., Bond, D.R., Lovley, D.R.: Graphite electrodes as electron donors for anaerobic respiration, Environ. Microbiol., 6, 596 – 604, (2004).
65 He, Z., Angenent, L.: Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18, 2009 – 2015 (2006), .
66 Huang, L., Regan, J.M., Quan, X.: Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells, Bioresour. Technol., 102, 316 – 323, (2011), .
67 Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., Oh, S.E.: Microbial fuel cell as new technology for bioelectricity generation: a review, Alexandria Engineering J., 54, 745 – 756, (2015).
68 Miyahara, M., Kouzuma, A., Watanabe, K.: Effects of NaCl concentration on anode microbes in microbial fuel cells, AMB Express, 5, 34, (2015), .
69 Lefebvre, O., Tan, Z., Kharkwal, S., Ng, H.Y.: Effect of increasing anodic NaCl concentration on microbial fuel cell performance, Bioresour. Technol., 112, 336 – 340, (2012) .
70 Miyahara, M., Kouzuma, A., Watanabe, K.: Sodium chloride concentration determines exoelectrogens in anode biofilms occurring from mangrove-grown brackish sediment, Bioresour. Technol., 218, 674 – 679, (2016), .
71 Pfennig, N., Biebl, H.: Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium, Arch. Microbiol., 110, 3 – 12, (1976)
72 Gebhardt, N.A., Thauer, R.K., Linder, D., Kauflers, P.M., Pfennig, N.: Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans, Arch. Microbiol., 141, 392 – 398, (1985).
73 Paulsen, J., Kröger, A., Thauer, R.K.: ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans, Arch. Microbiol., 144, 78 – 83, (1986).
74 Badalamenti, J.P., Summers, Z.M., Chan, C.H., Gralnick, J.A., Bond, D.R.: Isolation and genomic characterization of 'Desulfuromonas soudanensis WTL', a metal- and electrode-respiring bacterium from anoxic deep subsurface brine, Front. Microbiol., 7, 913, (2016), .
75 Sun, D., Call, D., Wang, A., Cheng, S., Logan, B.E.: Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions, Environ. Microbiol. Rep., 6, 723 – 729, (2014).
76 Fan, Y., Hu, H., Liu, H.: Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms, Environ. Sci. Technol., 41, 8154 – 8158, (2007), .
77 Shleev, S., Bergel, A., Gorton, L.: Biological fuel cells: divergence of opinion, Bioelectrochemistry, 106, 1 – 2, (2015).
78 Galushko, A.S., Kiesele-Lang, U., Kappler, A.: Degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture of mesophilic freshwater bacteria, Polyc. Arom. Comp., 23, 207 – 218, (2003).
79 Bertin, L., Lampis, S., Todaro, D., Scoma, A., Vallini, G., Marchetti, L., Majone, M., Fava, F.: Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon, Water Res., 44, 4537 – 4549, (2010).
80 Pendergast, M.T.M., Hoek, E.M.V.: A review of water treatment membrane nanotechnologies, Energ. Environ. Sci., 4, 1946 – 1971, (2011).
81 Lowy, D.A., Tender, L.M., Zeikus, J.G., Park, D.H., Lovley, D.R.: Harvesting energy from the marine sediment-water interface II. kinetic activity of anode materials, Biosens. Bioelectron., 21, 2058 – 2063, (2006), .
82 Park, D.H., Zeikus, J.G.: Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol Bioeng., 81, [3], 348 – 55, (2003), .
83 Schroeder, U., Harnisch, F., Angenent, L.T.: Microbial electrochemistry and technology: terminology and classification, Energ. Environ. Sci., 8, 513 – 519, (2015), .
84 Zhou, M., Chi, M., Luo, J., He, H., Jin, T.: An overview of electrode materials in microbial fuel cells, J. Power Sources, 196, 4427 – 4435, (2011) .
85 Chen, S., He, G., Carmona-Martinez, A.A., Agarwal, S., Greiner, A., Hou, H., Schröder, U.: Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells, Electrochem. commun., 13, 1026 – 1029, (2011), .
86 Chen, S., He, G., Liu, Q., Harnisch, F., Zhou, Y., Chen, Y., Hanif, M., Wang, S., Peng, X., Hou, H., Schröder, U.: Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis, Energ. Environ. Sci., 5, 9769 – 9772, (2012), .
87 Guo, K., Prévoteau, A., Patil, S.A., Rabaey, K.: Engineering electrodes for microbial electrocatalysis, Curr. Opin. Biotechnol., 33, 149 – 156, (2015), .
88 Richter, H., Nevin, K.P., Jia, H., Lowy, D.A., Lovley, D.R., Tender, L.M.: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer, Energ. Environ. Sci., 2, 506 – 516, (2009), .
89 Kuzmicheva, E.V., Reshetov, V.A., Kazarinov, I.A., Ignatov, O.V.: Discharge performance of the microbial fuel cell based on the bacterial species EscherichiaColi, in Russian, Elektrochimicheskaya energetika (Electrochemical energetics), 7, [1], 33 – 37, (2007).
90 Kusacheva, S.A., Chernyaev, S.I., Saschenko, I.I., Grishakova, V.V., Zhukova, Yu.M., Morozenko, D.N.: Justfication of the choice of designs and materials of bio-power generation system, in russian, Sovremennye naukoemkie tekhnologii, (Modern high technologies), 6, [1], 51 – 54, (2016).
91 Thorne, R., Hu, H., Schneider, K., Bombelli, P., Fisher, A., Peter, L.M., Dentc, A., Cameron, P.J.: Porous ceramic anode materials for photo-microbial fuel cells, J. Mater. Chem., 21, 18055 – 18060, (2011), .
92 Bowen, C.R., Thomas, T.: Macro-porous Ti2AlC MAX-phase ceramics by the foam replication method, Ceram. Int., 41, (9), 12178 – 12185, (2015), .
93 The online chemical encyclopedia http://www.xumuk.ru/encyklopedia
94 Zhong, Y., Xia, X., Shi, F., Zhan, J., Tu, J., Fan, H.J.: Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci. 3, 1500286, 1 of 28, (2016), .
95 Benda, K.V., Binder, H., Köhling, A., Sandstede, G.: Electrochemical behaviour of tungsten carbide electrodes. In: G. Sandstede (Ed.), From Electrocatalysis to Fuel Cells. The University of Washington Press, Seattle, 1972.
96 Palanker, V.S., Gajyev, R.A., Sokolsky, D.V.: On adsorption and electro-oxidation of some compounds on tungsten carbide; their effect on hydrogen electro-oxidation, Electrochim. Acta, 22, 133 – 136, (1977), .
97 Zeng, L., Zhang, L., Li, W., Zhao, S., Lei, J., Zhou, Z.: Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae, Biosens. Bioelectron., 25, 2696 – 2700, (2010), .
98 Zhang, L.X., Zhou, S.G., Zhuang, L., Li, W.S., Zhang, J.T., Lu, N., Deng, L.F.: Microbial fuel cell based on Klebsiella pneumoniae biofilm, Electrochem. Commun., 10, 1641 – 1643, (2008), .
99 Zeng, L.Z., Zhao, S.F., Li, W.S.: Ni3Mo3C as anode catalyst for high-performance microbial fuel cells, Appl. Biochem. Biotechnol., 2637 – 2646, (2015), .
100 Zeng, L.Z., Zhao, S.F., Wang, Y.Q., Li, H., Li, W.S.: Ni/ß-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on klebsiella pneumonia, Int. J. Hydrogen Energ., 37, 4590 – 4596, (2012), .
101 Park, I.H., Christy, M., Kim, P., Nahm, K.S.: Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell, Biosens. Bioelectron., 58, 75 – 80, (2014), .
102 Song, T.S., Wang, D.B., Li X., Liang, Y., Xie, J.: Cobalt oxide/nanocarbon hybrid materials as alternative cathode catalyst for oxygen reduction in microbial fuel cell, Int. J. Hydrogen Energ., 40, 3868 – 3874, (2015), .
103 Mehdinia, A., Ziaei, E., Jabbari, A.: Multi-walled carbon nanotube/SnO2 nanocomposite: A novel anode material for microbial fuel cells, Electrochim. Acta, 130, 512 – 518, (2014), .
104 Lv, Z., Xie, D., Yue, X., Feng, C., Wei, C.: Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications, J. Power Sources, 210, 26 – 31, (2012), .
105 Peng, X., Yu, H., Ai, L., Li, N., Wang, X.: Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour. Technol., 144, 689 – 692, (2013), .
106 Qiao, Y., Bao, S.J., Li, C.M., Cui, Q.Q., Lu, Z.S., Quo, J.: Nanostructured Polyaniline/Titanium fuel cells, ACS Nano, 2, 113 – 119, (2008), .
107 Wu, Y., Zhang, X., Li, S., Lv, X., Cheng, Y., Wang, X.: Microbial biofuel cell operating effectively through carbon nanotube blended with gold-titania nanocomposites modified electrode, Electrochim. Acta, 109, 328 – 332, (2013), .
108 Mehdinia, A., Ziaei, E., Jabbari, A.: Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation, Int. J. Hydrogen Energ., 39, 10724 – 10730, (2014), .
109 Varanasi, J.L., Nayak, A.K., Sohn, Y., Pradhan, D., Das, D.: Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts, Electrochim. Acta, 199, 154 – 163, (2016), .
110 Read, S.T., Dutta, P., Bond, P.L., Keller, J., Rabaey, K.: Initial development and structure of biofilms on microbial fuel cell anodes, BMC Microbiol, 10, 98, 1 of 10, (2010), .
111 Pham, T.H., Aelterman, P., Verstraete, W.: Bioanode performance in bioelectrochemical systems: recent improvements and prospects, Trends Biotechnol., 27, 168 – 178, (2009), .
112 Wang, Y., Li, B., Zeng, L., Cui, D., Xiang, X., Li, W.: Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells, Biosens. Bioelectron., 41, 582 – 588, (2013), .
113 Yin, Y., Huang, G., Zhou, N., Liu, Y., Zhang, L.: Increasing power generation of microbial fuel cells with a nano-CeO2 modified anode, Energ. Source. Part A, 38, 1212 – 1218, (2016), .
114 Mustakeem, M.: Electrode materials for microbial fuel cells: nanomaterial approach, Mater. Renew. Sustain. Energy, 4, 1 – 11, (2015), .
115 Chen, W., Liu, Z., Su1, G., Fu1, Y., Zai, X., Zhou, C., Wang, J.: Composite-modified anode by MnO2/polypyrrole in marine benthic microbial fuel cells and its electrochemical performance, Int. J. Energy Res., 41, 845 – 853, (2016), .
116 Santoro, C., Artyushkova, K., Gajda, I., Babanova, S., Serov, A., Atanassov, P., Greenman, J., Colombo, A., Trasatti, S., Ieropoulos, I.: Cathode materials for ceramic based microbial fuel cells (MFCs), Int. J. Hydrogen Energ., 40, [42], 14706 – 14715, (2015a).
117 Midyurova, B., Nenov, V., Ates, M., Uludag, N.: Improvements of MFC's proton exchange membranes and cathodes, J. Mater. Environ. Sci., 7, [1], 85 – 95, (2016).
118 Midyurova, B., Yemendzhiev, H., Tanev, P., Nenov, V.: Application of different ceramic materials to the microbial fuel cell design, J. Chem. Technol. Metallurg., 50, [4], 543 – 550, (2015).
119 Winfield, J., Greenman, J., Huson, D., Ieropoulos, I.: Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells, Bioprocess Biosyst. Eng., 36, [12], 1913 – 1921, (2013a), .
120 Chatterjee, P., Ghangrekar, M.M.: Design of clayware separator-electrode assembly for treatment of wastewater in microbial fuel cells, Appl. Biochem. Biotechnol., 173, 378 – 390, (2014a), .
121 Venkatesan, P.N., Dharmalingam, S.: Synthesis and characterization of pt, Pt-Fe/TiO2 cathode catalysts and its evaluation in microbial fuel cell, Mater Renew Sustain Energy, 5:11, (2016).
122 Maass, S., Finsterwalder, F., Frank, G., Hartmann, R., Merten, C.: Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources, 176, [2], 444 – 451, (2008).
123 Jinfeng, Z., Peng, Z., Jianjun, L., Jiaguo, Y.: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16, 20382 – 20386, (2014).
124 Wang, Y.J., Wilkinson, D.P., Zhang, J.: Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts, Chem. Rev., 111, [12], 7625 – 7651, (2011).
125 Yuan, H., Hou, Y., Abu-Reesh, I.M., Chen, J., He, Z.: Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review, Mater. Horiz., 3, 382 – 401, (2016).
126 Stoerzinger, K. A., Risch, M., Han, B., Shao-Horn, Y.: Recent insights into manganese oxides in catalyzing oxygen reduction kinetics, ACS Catal., 5, 6021 – 6031, (2015).
127 Li, X., Hu, B., Suib, S., Lei, Y., Li, B.: Manganese dioxide as a new cathode catalyst in microbial fuel cells, J. Power Sources, 195, 2586 – 2591, (2010).
128 Li, X., Hu, B., Suib, S., Lei, Y., Li., B.: Electricity generation in continuous flow microbial fuel cells (MFCs) with manganese dioxide (MnO2) cathodes, Biochem. Eng. J., 54, 10 – 15, (2011).
129 Zhang, L., Liu, C., Zhuang, L., Li, W., Zhou, S., Zhang, J.: Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells, Biosens. Bioelectron., 24, 2825 – 2829, (2009).
130 Lu, M., Kharkwal, S., Ng, H.Y., Li, S.F.Y.: Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells, Biosens. Bioelectron., 26, 4728 – 4732, (2011).
131 Liu, X.-W., Sun, X.-F., Huang, Y.-X., Sheng, G.-P., Zhou, K., Zeng, R. J., Dong, F., Wang, S.-G., Xu, A.-W., Tong, Z.-H., Yu, H.-Q.: Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater, Water Res., 44, 5298 – 5305, (2010).
132 Zhang, P., Li, K., Liu, X.: Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells, J. Power Sources, 264, 248 – 253, (2014).
133 Cheng, F., Shen, J., Peng, B., Pan, Y., Tao, Z., Chen, J.: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts, Nat. Chem., 3, 79 – 84, (2011).
134 Liew, K.B., Daud, R.W., Chasemi, M., Loh, K.S., Ismail, M., Lim, S.S., Leong, J.X.: Manganese oxide/functionalised carbon nanotubes nanocomposite as catalyst for oxygen reduction reaction in microbial fuel cell, Int. J. Hydrogen Energ., 40, [35], 11625 – 11632, (2015).
135 Zhang, Y., Hu, Y., Li, S., Sun, J., Hou, B.: Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell, J. Power Sources, 196, 9284 – 9289, (2011).
136 Chen, Y., Lv, Z., Xu, J., Peng, D., Liu, Y., Chen, J., Sun, X., Feng, C., Wei, C.: Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials, J. Power Sources, 201, 136 – 141, (2012), .
137 Wen, Q., Wang, S., Yan, J., Cong, L., Pan, Z., Ren, Y., Fan, Z.: MnO2-graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells, J. Power Sources, 216, 187 – 191, (2012), .
138 Kumar, G.G., Awan, Z., Nahm, K.S., Xavier, J.S.: Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells, Biosens. Bioelectron., 53, 528 – 534, (2014), .
139 Yuan, H., Deng, L., Tang, J., Zhou, S., Chen, Y., Yuan, Y.: Facile synthesis of MnO2/polypyrrole/MnO2 multiwalled nanotubes as advanced electrocatalysts for the oxygen reduction reaction, ChemElectroChem, 2, 1152 – 1158, (2015).
140 Gong, X.-B., You, S.-J., Wang, X.-H., Zhang, J.-N., Gan, Y., Ren, N.-Q.: A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell, Biosens. Bioelectron., 55, 237 – 241, (2014).
141 Ge, B., Li, K., Fu, Z., Pu, L., Zhang, X.: The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell, Bioresour. Technol., 195, 180 – 187, (2015).
142 Ahmed, J., Kim, H.J., Kim, S.: Embedded cobalt oxide nano particles on carbon could potentially improve oxygen reduction activity of cobalt phthalocyanine and its application in microbial fuel cells, RSC Adv., 4, 44065 – 44072, (2014).
143 Ge, B., Li, K., Fu, Z., Pu, L., Zhang, X., Liu, Z., Huang, K.: The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell, J. Power Sources, 303, 325 – 332, (2016).
144 Khilari, S., Pandit, S., Das, D., Pradhan, D.: Manganese cobaltite/polypyrrole nanocomposite-based air-cathode sustainable power generation in the single-chambered microbial fuel cells, Biosens. Bioelectron., 54, 534 – 540, (2014).
145 Hu, D., Wang, H., Wang, J., Zhong, Q.: Carbon-supported Cu-doped Mn-Co spinel-type oxides used as cathodic catalysts for the oxygen reduction reaction in dual-chambered microbial fuel cells, Energy Technol., 3, 48 – 54, (2015), .
146 Dong, H., Yu, H., Wang, X., Zhou, Q., Sun, J.: Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells, Chem. Technol. Biotechnol., 88, 774 – 778, (2013), .
147 Ahmed, J., Yuan, Y., Zhou, L., Kim, S.: Carbon supported cobalt oxide nanoparticles-iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells, J. Power Sources, 208, 170 – 175, (2012).
148 Wang, P., Lai, B., Li, H., Du, Z.: Deposition of fe on graphite felt by thermal decomposition of Fe(CO)5 for effective cathodic preparation of microbial fuel cells, Bioresour. Technol., 134, 30 – 35, (2013).
149 Ma, M., Dai, Y., Zou, J.-L., Wang, L., Pan, K., Fu, H.-G.: Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells, ACS Appl. Mater. Interfaces, 6, 13438 – 13447, (2014).
150 Ma, M., You, S., Gong, X., Dai, Y., Zou, J., Fu, H.: Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells, J. Power Sources, 283, 74 – 83, (2015).
151 Huang, J., Zhu, N., Yang, T., Zhang, T., Wu, P., Dang, Z.: Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells, Biosens. Bioelectron., 72, 332 – 339, (2015), https://doi.org/10.1016/j.bios.2015.05.035.
152 Liu, Z., Li, K., Zhang, X., Ge, B., Pu, L.: Influence of different morphology of three-dimensional CuxO with mixed facets modified air-cathodes on microbial fuel cell, Bioresour. Technol., 195, 154 – 161, (2015).
153 Zhang, X., Li, K., Yan, P., Liu, Z., Pu, L.: N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells, Bioresour. Technol., 187, 299 – 304, (2015).
154 Noori, M.T., Ghangrekar, M.M., Mukherjee, C.K.: V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater, Int. J. Hydrogen Energ., 41, 3638 – 3645, (2016).
155 Ghoreishi, K.B., Ghasemi, M., Rahimnejad, M., Yarmo, M.A., Daud, W.R.W., Asim, N., Ismail, M.: Development and application of vanadium oxide/polyaniline composite as a novel cathode catalyst in microbial fuel cell, Int. J. Energ. Res., 38, 70 – 77, (2014), .
156 Mecheri, B., Iannaci, A., D'Epifanio, A., Mauri, A., Licoccia, S.: Carbon-supported zirconium oxide as a cathode for microbial fuel cell applications, ChemPlusChem, 81, 80 – 85, (2016).
157 Morris, J.M., Jin, S., Wang, J., Zhu, C., Urynowicz, M.A.: Lead dioxide as an alternative catalyst to platinum in microbial fuel cells, Electrochem. Commun., 9, 1730 – 1734, (2007).
158 Garino, N, Sacco, A., Castellino, M., Munõz-Tabares, J.A., Chiodoni, A., Agostino, V., Margaria, V., Gerosa, M., Massaglia, G., Quaglio, M.: Microwave-assisted synthesis of reduced graphene oxide/SnO2 nanocomposite for oxygen reduction reaction in microbial fuel cells, ACS Appl. Mater. Interfaces, 8, 4633 – 4643, (2016), .
159 Singh, I., Chandra, A.: Use of the oxygen storage material CeO2 as co-catalyst to improve the performance of microbial fuel cells, Int. J. Hydrogen Energ., 41, 1913 – 1920, (2016).
160 Khilari, S., Pandit, S., Varanasi, J.L., Das, D., Pradhan, D.: Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell, ACS Appl. Mater. Interfaces, 7, 20657 – 20666, (2015).
161 Wen, Z., Zhang, S.Ci.F., Feng, X., Cui, S., Mao, S., Luo, S., He, Z., Chen, J.: Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction, Adv. Mater., 24, 1399 – 1404, (2012), .
162 Chen, R., Li, H., Chu, D., Wang, G.: Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions, J. Phys. Chem., 113, 20689 – 20697, (2009).
163 Burkitt, R., Whiffen, T.R., Yu, E.H.: Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications, Appl. Catal., B, 181, 279 – 288, (2016).
164 Zhang, Y., Mo, G., Li, X., Ye, J.: Iron tetrasulfophthalocyanine functionalized graphene as a platinum-free cathodic catalyst for efficient oxygen reduction in microbial fuel cells, J. Power Sources, 197, 93 – 96, (2012), .
165 Gupta, S., Tryk, D., Bae, I., Aldred, W., Yeager, E.: Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction, J. Appl. Electrochem., 19, 19 – 27, (1989).
166 You, S., Gong, X., Wang, W., Qi, D., Wang, X., Chenand, X., Ren, N.: Enhanced cathodic oxygen reduction and power production of microbial fuel cell based on noble-metal-free electrocatalyst derived from metal-organic frameworks, Adv. Energy Mater., 6, (2016), .
167 Zhao, F., Harnisch, F., Schröder, U., Scholz, F., Bogdanoff, P., Herrmann, I.: Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Commun., 7, 1405 – 1410, (2005), .
168 Birry, L., Mehta, P., Jaouen, F., Dodelet, J.P., Guiot, S.R., Tartakovsky, B.: Application of iron-based cathode catalysts in a microbial fuel cell, Electrochim. Acta, 56, 1505 – 1511, (2011).
169 Deng, L., Zhou, M., Liu, C., Liu, L., Liu, C., Dong, S.: Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells, Talanta, 81, 444 – 448, (2010), .
170 Schulenburg, H., Stankov, S., Schünemann, V., Radnik, J., Dorbandt, I., Fiechter, S., Bogdanoff, P., Tributsch, H.: Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites, J. Phys. Chem. B, 107, 9034 – 9041, (2003).
171 Yu, E.H., Cheng, S., Logan, B.E., Scott, K.: Electrochemical reduction of oxygen with iron phthalocyanine in neutral media, J. Appl. Electrochem., 39, 705 – 711, (2008), .
172 Nguyen, M-T., Mecheri, B., Iannaci, A., D'Epifanio, A., Licoccia, S.: Iron/polyindole-based electrocatalysts to enhance oxygen reduction in microbial fuel cells, Electrochim. Acta, 190, 388 – 395, (2006).
173 Kim, J.R., Kim, J.-Y., Han, S.-B., Park, K.-W., Saratale, G.D., Oh, S.-E.: Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells, Bioresour. Technol., 102, 342 – 347, (2011), .
174 Pan, Y., Mo, X., Li, K., Pu, L., Liu, D., Yang, T.: Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells, Bioresour. Technol., 206, 285 – 289, (2016), https://doi.org/10.1016/j.biortech.2016.01.112.
175 Xia, X., Zhang, F., Zhang, X., Liang, P., Huang, X., Logan, B.E.: Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells, ACS Appl. Mater. Interfaces, 5, 7862 – 7866, (2013), https://doi.org/10.1021/am4018225.
176 Ma, S., Goenaga, G.A., Call, A.V., Liu, D.-J.: Cobalt imidazolate framework as precursor for oxygen reduction electrocatalysts, Chem. – Eur. J., 17, 2063 – 2067, (2011), .
177 Tang, H., Cai, S., Xie, S., Wang, Z., Tong, Y., Pan, M., Lu, X.: Metal-organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells, Adv. Sci., 3, 1500265, (2016), .
178 Tang, X., Li, H., Wang, W., Du, Z., Ng, H.Y.: A high-performance electrocatalytic air cathode derived from aniline and iron for use in microbial fuel cells, RSC Adv., 4, 12789 – 12794, (2014), .
179 Tang, X., Li, H., Du, Z., Ng, H.Y.: Polyaniline and iron based catalysts as air cathodes for enhanced oxygen reduction in microbial fuel cells, RSC Adv., 5, 79348 – 79354, (2015), .
180 Su, Y., Jiang, H., Zhu, Y., Zou, W., Yang, X., Chen, J., Li, C.: Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media, J. Power Sources, 265, 246 – 253, (2014), .
181 Chan, Y.-Z., Dai, Y., Li, R., Zou, J.-L., Tian, G-H., Fu, H.-G.: Low-temperature synthesized nitrogen-doped iron/iron carbide/partly-graphitized carbon as stable cathode catalysts for enhancing bioelectricity generation, Carbon, 289, 8 – 19, (2015), .
182 Santoro, C., Serov, A., Narvaez Villarrubia, C.W., Stariha, S., Babanova, S., Schuler, A.J., Artyushkova, K., Atanassov, P.: Double-chamber microbial fuel cell with a non-platinum-group metal Fe-N-C cathode catalyst, ChemSusChem, 8, 828 – 834, (2015), .
183 Li, S., Hu, Y., Xu, Q., Sun, J., Hou, B., Zhang, Y.: Iron- and nitrogen-functionalized graphene as a non-precious metal catalyst for enhanced oxygen reduction in an air-cathode microbial fuel cell, J. Power Sources, 213, 265 – 269, (2012), .
184 Milner, E.M.: Development of an aerobic biocathode for microbial fuel cells, PhD thesis, Chemical Engineering and Advanced Materials, Newcastle University, pp. 251, (2015).
185 Mao, Y., Zhang, L., Li, D., Shi, H., Liu, Y., Cai, L.: Power generation from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria, Electrochim. Acta, 55, 7804 – 7808, (2010), .
186 Rhoads, A., Beyenal, H., Lewandowski, Z.: Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol., 39, 4666 – 4671, (2005).
187 Behera, M., Jana, P.S., Ghangrekar, M.M.: Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode, Bioresour. Technol., 101, 1183 – 1189, (2010), .
188 Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S., Kim, I.S.: Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells, Energy Fuels, 22, 169 – 176, (2008), .
189 Daud, S.M., Kim, B.H., Ghasemi M., Daud, W.R.W.: Separators used in microbial electrochemical technologies: current status and future prospects, Bioresour. Technol., 195, 170 – 179, (2015), .
190 Dhar, B.R., Lee, H.-S.: Membranes for bioelectrochemical systems: challenges and research advances, Environ. Technol., 34, 1751 – 1764, (2013), .
191 Kim, K.-Y., Chae, K.-J., Choi, M.-J., Yang, E.-T., Hwang, M.H., Kim, I.S.: High-quality effluent and electricity production from non-CEM based flow-through type microbial fuel cell, Chem. Eng. J., 218, 19 – 23, (2013), .
192 Li, W.W., Sheng, G.P., Liu, X.W., Yu, H.Q.: Recent advances in the separators for microbial fuel cells, Bioresour. Technol., 102, 244 – 252, (2011), .
193 Choi, M.-J., Chae, K.-J., Ajayi, F.F., Kim, K.-Y., Yu, H.-W., Kim, C.-W., Kim, I.S.: Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance, Bioresour. Technol., 102, 298 – 303, (2011), .
194 Xu, J., Sheng, G.P., Luo, H.W., Li, W.W., Wang, L.F., Yu, H.Q.: Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell, Water Res., 46, 1817 – 1824, (2012), .
195 Ter Heijne, A., Hamelers, H.V.M., De Wilde, V., Rozendal, R.A., Buisman, C.J.N.: A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol., 40, 5200 – 5205, (2006), .
196 Kim, K.-Y., Yang, E., Lee, M.-Y., Chae, K.-J., Kim, C.-M., Kim, I.S.: Polydopamine coating effects on ultrafiltration membrane to enhance power density and mitigate biofouling of ultrafiltration microbial fuel cells (UF-MFCs), Water Res., 54, 62 – 68, (2014), .
197 Ge, Z., Ping, Q., Xiao, L., He, Z.: Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater, Desalination, 312, 52 – 59, (2013), .
198 Werner, C.M., Logan, B.E., Saikaly, P.E., Amy, G.L.: Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an aircathode microbial osmotic fuel cell, J. Membrane Sci., 428, 116 – 122, (2013), .
199 Zhang, F., Brastad, K.S., He, Z.: Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation, Environ. Sci. Technol., 45, 6690 – 6696, (2011), .
200 Winfield, J., Chambers, L.D., Rossite, J., Ieropoulos, I.: Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells, Bioresour. Technol., 148, 480 – 486, (2013), .
201 Ge, Z., He, Z.: Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells, Bioresour. Technol., 109, 70 – 76, (2012), .
202 Seo, H.N., Lee, W.J., Hwang, T.S., Park, D.H.: Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film, J. Microbiol. Biotechnol., 19, [9], 1019 – 1027, (2009), .
203 Jackson, M.L.: Significance of kaolinite intercalation in clay mineral analysis, Clay. Clay Miner., 9, 424 – 430, (1960).
204 Tertre, E., Hubert, F., Bruzac, S., Pacreau, M., Ferrage, E., Pret, D.: Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments, Geochim. Cosmochim. Acta, 112, 1 – 19, (2013), .
205 Matthews, G.P., Laudone, G.M., Gregory, A.S., Bird, N.R.A., Matthews, A.D. G., Whalley, W.R.: Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil, Water Resour. Res., 46, W05501, (2010), .
206 Behera, M., Jana, P.S., More, T.T., Ghangrekar, M.M.: Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH, Bioelectrochemistry, 79, 228 – 233, (2010), .
207 Jana, P.S., Behera, M., Ghangrekar, M.M.: Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder, Int. J. Hydrogen Energ., 35, 5681 – 5686, (2010), .
208 Behera, M., Ghangrekar, M.M.: Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness, Water Sci. Technol., 64, 2468 – 2473, (2011), .
209 Ajayi, F.F., Weigele, P.R.: A terracotta bio-battery, Bioresour. Technol., 116, 86 – 91, (2012), Epub 2012 Apr 17.
210 Ghadge, A.N., Sreemannarayana, M., Duteanu, N., Ghangrekar, M.M.: Influence of ceramic separator's characteristics on microbial fuel cell performance, J. Electrochem. Sci. Eng., 4, [4], 315 – 326, (2014), .
211 Ghadge, A.N., Ghangrekar, M.M.: Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells, Electrochim. Acta., 166, 320 – 328, (2015), .
212 Pasternak, G., Greenman, J., Ieropoulos, I.: Comprehensive study on ceramic membranes for low-cost microbial fuel cells, Chemsuschem, 9, 88 – 96, (2016), .
213 Ieropoulos, I.A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., Greenman, J.: Waste to real energy: the first MFC powered mobile phone, Phys. Chem. Chem. Phys., 15, [37], 15312 – 15316, (2013), .
214 Yang, E., Chae, K., Kim, I.S.: Assessment of different ceramic filtration membranes as a separator in microbial fuel cells, Desalination and Water Treatment., 57, [58], 1 – 9, (2016), .
215 Ciora, R., Liu, P.K.: Ceramic membranes for environmental related applications, Fluid/Particle Sep. J., 15, 51 – 60, (2003).
Copyright
Göller Verlag GmbH