Articles
All articles | Recent articles
Mechanical Properties of Zirconia Y-TZP Core Veneered for Dentistry Applications
C.N. Elias1, H.E.S. dos Santos1, M. Garbossa2, C. dos Santos3
1 Instituto Military de Engenharia, Materials Science Department, Pça Gen Tibúrcio, 80, Praia Vermelha, 22290 – 270 Rio de Janeiro, RJ – Brasil.
2 Universidade Veiga de Almeida, Rua Ibituruna, 108, 27271 – 901 Rio de janeiro, RJ – Brazil.
3 Universidade do Estado do Rio de Janeiro, 27537 – 803 Resende, RJ – Brazil.
received May 15, 2017, received in revised form September 4, 2017, accepted November 7, 2017
Vol. 8, No. 4, Pages 525-530 DOI: 10.4416/JCST2017-00032
Abstract
The objective of this work is to compare the mechanical properties of sintered yttria tetragonal zirconia polycrystalline (Y-TZP) micro- and nano-particles, and evaluate the influence of a layer of veneer aesthetic ceramic (annealing from 600 °C to 935 °C, surface finishing) on Y-TZP mechanical properties. The specimens were cut from four Y-TZP pre-sintered blocks, sintered, polished and coated with feldspathic ceramic. One experimental Y-TZP block was made with Y-TZP nano-particles and three commercially available blocks were made with Y-TZP micro-particles from different companies (ProtMat, Ivoclar and Vita). One group of ProtMat Y-TZP micro-particles specimens was not coated. The zirconia with nano-particles showed the highest flexural strength (1020 MPa) and fracture toughness (11.2 MPa·m-1/2). ANOVA statistical analysis did not show statistically a difference in the flexural strength (∼ 850 MPa), hardness (∼ 1300 HV), fracture toughness (∼ 9 MPa·m-1/2) and shear strength (∼ 12.97 MPa) among the zirconia specimens with micrometer-sized particles.
Download Full Article (PDF)
Keywords
Y-TZP, zirconia nano-particles, dental prosthesis, zirconia core veneered
References
1 Boudrias, P.: The yttrium tetragonal zirconia polycrystals (Y-TZP) Infrastructure: the new chapter in the search for a metal framework replacement, J. Dent. Quebec, 42, 172 – 6, (2005).
2 Goiato, M.C., Pesqueira, A.A., Monteiro, D.R., Faria Almeida, D., dos Santos, D.M.: Clinical satisfaction and quality of ceramic fixed dentures, Int. J. Appl. Ceram. Technol., 11, [1], 100 – 5, (2014).
3 Yondem, I., Inan, O.: The effect of different surface finishing procedures on surface roughness and fracture toughness in all-ceramic restorations, Int. J. Appl. Ceram. Technol., 8, [2], 437 – 45, (2011).
4 Larsson, C., Wennerberg, A.: The clinical success of zirconia-based crowns: A systematic review, Int. J. Prosthodont, 27, [1], 33 – 43, (2014).
5 Guazzato, M., Albakry, M., Ringer, S.P., Swainet, M.V.: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics, Dent Mater., 20, [5], 449 – 56, (2004).
6 Johannes, J.M., Schneider, J.: Processing of nanostructured zirconia composite ceramics with high aging resistance., J. Ceram. Sci. Tech., 3, [3], 151 – 158, (2012).
7 Diego, A.A., Santos, C., Landim, K.T., Elias, C.N.: Characterization of ceramic powders used in the InCeram system to fixed dental prosthesis, Mater. Res.-Ibero-AM. J., 10, [1], 47 – 51, (2007).
8 Moraes, M.C.C.S.B., Elias, C.N., Dualibi Filho, J., de Oliveira, L.G.: Mechanical properties of alumina-zirconia composites for ceramic abutments, Mater. Res.-Ibero-AM. J., 7, [4], 643 – 9, (2004).
9 Madfa, A.A.: Use of Zirconia in Dentistry: An Overview. The Open Biomaterials J., 5, [1], 1 – 9, (2014).
10 Kosmac, T., Oblak, C., Jevnikar, P.: The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic, Dent. Mater., 15, [6], 426 – 33, (1999).
11 JIS, "Testing method for flexural strength (modulus of rupture) of high performance ceramics", pp. 1 – 24, Vol. JIS R 1601, Japanese Industrial Standard, 1982.
12 ASTM C1161. Standard test method for flexural strength of advanced ceramics at ambient temperature.
13 ASTM, "Standard test method for Vickers indentation hardness of advanced ceramics", pp. 1 – 8, Vol. C-1327 – 99, American Society for Testing and Materials, West Conshohocken, 1999.
14 ASTM, "Standard test method for determination of fracture toughness of advanced ceramics at ambient temperature", pp. 1 – 32, Vol. C-1424 – 99, American Society for Testing and Materials, West Conshohocken, 1999.
15 Zeng, K., Odén, A., Rowcliffe, D.: Flexure tests on dental ceramics, Int. J. Prosthodont., 9, [5], 434 – 9, (1996).
16 Kern, F., Lindner, V., Gadow, R.: Low-temperature degradation behaviour and mechanical properties of a 3Y-TZP manufactured from detonation-synthesized powder, J. Ceram. Sci. Tech., 7, [4]. 313 – 322, (2016).
17 Danilenko, I., Konstantinova, T., Volkova, G., Burkhovetski, V., Glazunova, V.: The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount, J. Ceram. Sci. Tech., 6, [3], 191 – 200, (2015).
18 Santos, C., Teixeira, L.H.P., Strecker, K., Elias, C.N.: Effect of Al2O3 addition on the mechanical properties of biocompatible ZrO2-Al2O3 composites, Mater. Sci. Forum, 530, 575 – 580, (2006).
19 Sundh, A., Molin, M., Sjögren, G.: Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing, Dent. Mater., 21, [5] 476 – 82, (2005).
20 Yilmaz, H., Dinçer, C.: Comparison of the bond compatibility of titanium and a NiCr alloy to dental porcelain, J. Dent. Res., 27, [3], 215 – 22, (1999).
21 Elias, C.N., Melo, A.M., dos Santos, H.E.S.: Degradation and mechanical properties of zirconia 3-unit fixed dental prostheses machined on a CAD/CAM system, Int. J. Appl. Ceram. Technol., 11, [3], 513 – 23, (2014).
22 Vagkopoulou, T., Koutayas, S.O., Koidis, P., Strub, J.R.: Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic, Eur. J. Esthet. Dent., 4, [2], 130 – 51, (2009).
23 Daguano, J.K.M.F., Teixeira, L.H.P., Santos, C., Koizumi, M.H., Elias, C.N.: The ZrO2-Al2O3 composite for dental materials, Rev. Matéria., 11, [4], 455 – 62, (2006).
24 Tinschert, J., Zwez, D., Max, R. et al.: Structural reliability of alumina, feldspar, leucite, mica and zirconia-based ceramics, J. Dent., 28, [7], 529 – 35, (2000).
25 Della Bona, A., Anusavice, K.J., Mecholsky, J.J.: Failure analysis of resin composite bonded to ceramic, Dent. Mater., 19, [8], 693 – 9, (2003).
26 Souza, R.C., dos Santos, C., Barboza, M.J.R., Baptista, C.A.R.P., Strecker, K., Elias, C.N.: Performance of 3Y-TZP bioceramics under cyclic fatigue loading, Mater. Res.-Ibero-AM. J., 11, [1], 89 – 92 (2008).
Copyright
Göller Verlag GmbH