Articles
All articles | Recent articles
The Role of Pore-Formers on Grain Interior and Grain Boundary Conductivity in Tape-Cast Porous Sheets for Electrochemical Flue Gas Purification
C. Grings Schmidt, K.B. Andersen, E. Stamate, A. Kaiser, K. Kammer Hansen
Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
received March 31, 2017, received in revised form July 2, 2017, accepted July 31, 2017
Vol. 8, No. 4, Pages 485-492 DOI: 10.4416/JCST2017-00024
Abstract
Ce0.9Gd0.1O1.95 (CGO) electrolytes for electrochemical flue gas purification were fabricated by means of tape casting with different types, shapes and sizes of pore-formers. The sintered bodies were characterized with electrochemical impedance spectroscopy, to investigate the role of the different pore-formers on the electrochemical properties of the cast tapes. A strong effect of the different pore-formers on the conductivity (both grain interior and grain boundary conductivities) was observed. In addition, the conductivity data were also correlated with previously obtained gas permeability data. The conductivity data correlated with the permeability data in the sense that a higher permeability lead to a lower conductivity. The porosity of the samples also influenced the conductivities. The higher the porosity of the sintered bodies, the lower the conductivity was, as expected.
Download Full Article (PDF)
Keywords
CGO, tape casting, EIS, conductivity
References
1 Butler, A.R.,Williams, D.L.H.: The physiological-role of nitric-oxide, Chem. Soc. Rev., 22, 233 – 241, (1993).
2 Manahan, S.: Environmental chemistry, 1994, Ann Arbor, MI Lewis Publ., (n.d.).
3 Wei, E.T., Shu, H.P.: Nitroaromatic carcinogens in diesel soot: A review of laboratory findings, Am. J. Public Health, 73, [9], 1085 – 1088, (1983).
4 Pancharatnam, S.: Catalytic decomposition of nitric oxide on zirconia by electrolytic removal of oxygen, J. Electrochem. Soc., 122, [7], 869, (1975).
5 Ohji, T., Fukushima, M.: Macro-porous ceramics: processing and properties, Int. Mater. Rev., 57, 115 – 131, (2012).
6 Clemmer, R.M.C., Corbin, S.F.: Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes, Solid State Ionics, 166, 251 – 259, (2004).
7 Chen, X.J., Khor, K.a., Chan, S.H., Yu, L.G.: Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng. A, 335, 246 – 252, (2002).
8 Min Park, Y., Man Choi, G.: Microstructure and electrical properties of YSZ-NiO composites, Solid State Ionics, 120, 265 – 274, (1999).
9 Schmidt, C.G., Andersen, K.B., Fu, Z., Hansen, K.K., Roosen, A., Kaiser, A.: Effect of pore formers on properties of tape cast porous sheets for electrochemical flue gas purification, J. Eur. Ceram. Soc., 36, 645 – 653, (2016).
10 Charlas, B., Schmidt,C.G., Frandsen, H.L., Andersen, K.B., Bocaccini, D., Hansen, K.K., Roosen, A., Kaiser, A.: Influence of pore former on porosity and mechanical properties of tape-cast Ce0.9Gd0.1O1.95 electrolytes for electrochemical flue gas purification, Ceram. Int., 42, 4546 – 4555, (2016).
11 Schouler, E.J.L., Mesbahi, N., Vitter, G.: In situ study of the sintering process of yttria stabilized zirconia by impedance spectroscopy, Solid State Ionics, 9 – 10, 989, (1983).
12 Badwal, S.P.S., Drennan, J.: Yttria-zirconia: effect of microstructure on conductivity, J. Mater. Sci., 22, 3231, (1987).
13 Steil, M.C., Thevenot, F., Kleitz, M.: Densification of yttria-stabilized zirconia: impedance spectroscopy analysis, J. Electrochem. Soc., 144, 390, (1997).
14 Gibson, I.R., Dransfield, G.P., Irvine, J.T.S.: Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity, J. Mater. Sci., 33, 4297, (1998).
15 Pérez-Coll, D., Sánchez-López, E., Mather, G.C.: Influence of porosity on the bulk and grain-boundary electrical properties of Gd-doped ceria, Solid State Ionics, 181, 1033 – 1042, (2010).
16 Badwal, S.P.S., Drennan, J.: Evaluation of conducting properties of yttria-zirconia wafers, Solid State Ionics, 40, 869, (1990).
17 Dessemond, L., Muchillo, R., Hénault, M., Kleitz, M.: Electric conduction-blocking effects of voids and 2nd phases in stabilized zirconia, J. Appl. Phys. A, 57, 57, (1993).
18 de Florio, D.Z. Muchillo, R.: Sintering of zirconia-yttria ceramics studied by impedance spectroscopy, Solid State Ionics, 123, 301, (1999).
19 Lobera, M.P., Serra, J.M., Foghmoes, S.P., Søgaard, M., Kaiser, A.: On the use of supported ceria membranes for oxyfuel process/syngas production, J. Memb. Sci., 385 – 386, 154 – 161, (2011).
20 Klemensø, T., Menon, M., Ramousse, S.: Low toxicity binder systems for tape cast Ce0.9Gd0.1O1.95 laminates, Ceram. Int., 36, 773 – 780, (2010).
21 Schmidt, C.G., Ippolito, D., Bentzen, J.J., Andersen,K.B., Kaiser, A. Hansen, K.K.: Fabrication and characterization of multi-layer ceramics for electrochemical flue gas purification, J. Electrochem. Soc., 160, [9], E113 – E119, (2013).
22 Boukamp, B.A.: A nonlinear least-squares fit procedure for analysis of immitance data of electrochemical systems, Solid State Ionics, 20, 31, (1986).
23 MacDonald, J.R.: Impedance Spectroscopy: Emphasizing Solid Materials and Systems. Wiley-Interscience, New York, 1987.
24 Jacobsen, T., Zachau-Christiansen, B., Bay, L., Skaarup, S.: No Title; p. 29 in Proc. 17th Int. Symp. Mater. Sci. High Temp. Electrochem. Ceram. Met. Edited by F.W. Poulsen and E. Al. Roskilde, 1996.
25 Bruggeman, D.A.G.: Calculation of various physical constants of heterogeneous substances. I. Dielectricity constants and conductivities of mixed bodies from isotropic substances (in German), Ann. Phys., 24, 636, (1935).
Copyright
Göller Verlag GmbH