Articles
All articles | Recent articles
Effect of Alumina-Coated Graphite (ACG) on the Microstructure and Mechanical Properties of Al2O3-C Refractories
X. Xu, Y. Li, Q. Wang, S. Sang, L. Pan
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
received October 7, 2016, received in revised form June 17, 2017, accepted June 26, 2017
Vol. 8, No. 4, Pages 455-462 DOI: 10.4416/JCST2016-00079
Abstract
Alumina-coated graphite (ACG) was prepared by soaking expanded graphite (EG) in an AlCl3 solution with vacuum impregnation. The graphite was then filtered, dried and treated in a coke bed at 400 – 1000 °C. The ACG was incorporated into Al2O3-C refractories, partly or completely replacing EG. The results showed that the alumina coating on the graphite was effective and delayed the oxidation behavior of the expanded graphite. It also allowed the structure of the graphite to survive largely intact at high temperatures as it had been incorporated into the Al2O3-C refractories while there were fewer in situ-formed ceramic phases in the matrix, e.g. SiC whiskers. As a result, ACG-containing Al2O3-C refractories exhibited better thermal shock resistance than that of common Al2O3-C refractories.
Download Full Article (PDF)
Keywords
Alumina-coated graphite, expanded graphite, microstructure, mechanical properties
References
1 Takanaga, S., Ochiai, T., Tamura, S., et al.: The application of the nano structural matrix to MgO-C bricks (Nano-tech. refractories-2) in: Proceedings of UNITECR'03 Congress, Osaka, Japan, (2011).
2 Yu, M.F., Lourie, O., Dyer, M.J, et al.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637 – 640, (2000).
3 Luo, M., Li. Y.W., Jin, S.L., et al.: Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes, Mat. Sci. Eng. A, 548, 134 – 141, (2012).
4 Zhu, T.B., Li, Y.W., Sang, S.B., et al.: Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories. Ceram. Int., 40, 4333 – 4340, (2014).
5 Mahato, S., Pratihar, S.K. et al.: Fabrication and properties of MgO-C refractories improved with expanded graphite, Ceram. Int., 40, [10], 16535 – 16542, (2014).
6 Wang, Q.H., Li, Y.W., Sang, S.B., et al.: Effect of the reactivity and porous structure of expanded graphite (EG) on microstructure and properties of Al2O3-C refractories, J. Alloy. Compd., 645, 388 – 397, (2015).
7 Zhu, T.B, Li, Y.W., Jin, S.L. et al.: Microstructure and mechanical properties of MgO-C refractories containing expanded graphite. Ceram. Int., 39, 4529 – 4537, (2013).
8 Xu, X.F., Li, Y.W., Wang, Q.H. et al.: Effect of silicon-modified expanded graphite on microstructure and mechanical properties of Al2O3-C refractories, Journal of Synthetic Crystals, 45, [9], 2257 – 2264, (2016).
9 Cheng, M., Yang, R., Zhang, L., et al.: Restoration of graphene from graphene oxide by defect repair, Carbon, 50, [7], 2581 – 2587, (2012).
10 Shirasaki, T., Derré, A., Ménétrier, M., et al.: Synthesis and characterization of boron-substituted carbons, Carbon, 38, [10], 1461 – 1467, (2000).
11 Sheng, Z.H., Shao, L., Chen, J.J., et al.: Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano, 5, [6], 4350, (2011).
12 Wu, G.S., Ma, L.C., Liu, L., et al.: Preparation of SiO2-GO hybrid nanoparticles and the thermal properties of methylphenylsilicone resins/SiO2-GO nanocomposites, Thermochim. Acta, 613, 77 – 86, (2015).
13 Kim, K.T., Dao, T.D., Han, M.J., et al.: Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite, Mater. Chem. Phys., 153, 291 – 300, (2015).
14 Wang, Q.H. Composition, microstructure and mechanical properties of Al2O3-C refractories containing expanded graphite: [D]. Wuhan: Wuhan University of Science and Technology, 2015.
15 Sumita, R., Mukesh, K., Sumit, S., et al.: Role of graphene in structural transformation of zirconium oxide. J. Sol-Gel Sci. Techn., 71, [3], 470 – 476, (2014).
16 Sitko, R., Turek, E., Zawisza, B., Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton T., 42, [16], 5682. (2013).
17 Park, S., An, J., Piner, R.D., Jung, I., et al.: Aqueous suspension and characterization of chemically modified graphene sheets, Chem. Mater., 20, [21], 6592, (2008).
18 Chen, W., Yan, L., Bangal, P.R.: Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon, 48, [4], 1146 – 1152, (2010).
19 Ning, X.A., Li, K., Li, R.S., et al.: FTIR analysis of polyaluminium chloride, Environ. Chem., 27, [2], 263 – 26, (2008).
20 Li, X.J., Jiang, W.H., Wei, H.Y., et al.: FTIR analysis of metal chlorinated alcohol salt, Guangzhou Chemistry, 33, [4], 42 – 47, (2008).
21 Shek, C.H., Lai, J.K.L., Gu, T.S.: Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders, Nano Structured Materials, 8, 605, (1997).
22 Zhang, C.S., Zhao, F., Zhang, J.J., et al.: Infrared spectroscopy of nano-sized alumina, ACTA Chim. Sinica, 57, [3], 275 – 280, (1999).
23 Li, D.Y., Yang, H., Xie, T.T., et al.: The heat treatment process of hydrous alumina and characteristics of nanometer Al2O3, Chinese J. Inorg. Chem., 22, [1], 96 – 100, (2006).
24 Wang, Q.H., Li, Y.W., Luo, M., et al.: Strengthening mechanism of graphene oxide nanosheets for Al2O3-C refractories, Ceram. Int., 40, [1], 163 – 172, (2014).
25 Wang, H., Li, Y.W., Zhu, T.B., et al.: Microstructures and mechanical properties of Al2O3-C refractories with addition of microcrystalline graphite, Ceram. Int., 40, [7], 11139 – 11148, (2014).
26 Luo, M., Li, Y.W., Jin, S.L., et al.: Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes, Mat. Sci. Eng. A, 548, [5], 134 – 141, (2012).
27 Han, J.H., Cho, K.W., Lee, K.H., et al..: Porous graphite matrix for chemical heat pumps, Carbon, 36, [12], 1801 – 1810, (1998).
28 Zhao, J.G., Shi, J.L., Guo, Q.G., et al.: Carbon nanotube growth in the pores of expanded graphite by chemical vapor deposition, Carbon, 47, 1747 – 1751, (2009).
29 Li, Y. W., Wang, Q. H., Fan, H. B.: Synthesis of silicon carbide whiskers using reactive graphite as template, Ceram. Int., 40, 1481 – 1488, (2014).
Copyright
Göller Verlag GmbH