Articles
All articles | Recent articles
Methods for Geopolymer Formulation Development and Microstructural Analysis
A. van Riessen1, W.D.A. Rickard1, R.P. Williams1, G.A. van Riessen2
1 John de Laeter Centre, Curtin University, Perth, Western Australia
2 Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
received July 31, 2017, received in revised form August 5, 2017, accepted August 21, 2017
Vol. 8, No. 3, Pages 421-432 DOI: 10.4416/JCST2017-00065
Abstract
Alkali-activated materials (AAMs) and geopolymers have been extensively studied, although widespread commercialisation has been hampered, in part, by the use of precursors that are rarely homogeneous and are generally poorly characterised. Even when precursors are well characterised, their extent of reaction during geopolymer synthesis is not well known, leading to a disparity between targeted and actual compositional ratios. Small variations in compositional ratios, particularly Si:Al, can lead to dramatic changes in physical properties. A process for characterising precursors, focussing on their reactive component, will be described here, followed by methods that can be used to determine the extent of reaction in the final product. Characterising the final product is important, but it does not reveal what processes occur between mixing the precursors and setting of the solid geopolymer. We will also describe a method that can be used to track dissolution of precursors and subsequent evolution of the alkali-activated product, thus providing a more comprehensive picture of geopolymerisation. This paper demonstrates a link between precursor characterisation and the extent of reaction in order to provide those working with alkali-activated materials with additional knowledge enabling them to manufacture reproducible, high-quality products.
Download Full Article (PDF)
Keywords
Alkali-activated materials, geopolymer, precursor
References
1 Roy, D.M.: Alkali-activated cements. opportunities and challenges, Cement Concrete Res., 29, 249 – 254, (1999).
2 Shi, C., Krivenko, P.V., Roy, D.: Alkali-activated cements and concretes. Taylor and Francis, Milton Park, 2006.
3 Provis, J.L., van Deventer, J.S.J.: Geopolymers: Structure, processing, properties and industrial applications. Woodhead Publishing Limited, Oxford, 2009.
4 Glasby, T., Day, J., Genich, R., Kemp, M.: Commercial scale geopolymer concrete construction, In: Proceedings of the saudi international building and constructions technology conference, 2015.
5 van Riessen, A., Chen-Tan, N., Portella, J., Bernard, J.S., Gourley, T.: Chapter 14: Geopolymer Cement and Concrete, 441 – 458. In Coal Combustion Products Handbook – Second Edition. Editors: Ward, C., Heidrich, C., Yeatman, O.: Ash Development Association of Australia, (2014).
6 Williams R., van Riessen, A.: Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD, Fuel, 89, 3683 – 3692, (2010).
7 Rickard, W.D.A., Williams, R., Jadambaa T., van Riessen, A.: Assessing the suitability of three australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications, Mat. Sci. Eng. A, 528, 3390 – 3397, (2011).
8 Cement Industry Federation, Cementing Our Future 2005 – 2030. Technology Pathway for the Australian Cement Industry, 2005
9 Williams, R., Hart, R., van Riessen, A.: Quantification of the extent of reaction of metakaolin based geopolymers using XRD, SEM and EDS, J. Am. Ceram. Soc., 94, [8], 2663 – 2670, (2011).
10 Sturm, P., Greiser, S., Gluth, G.J.G., Jäger, C., Brouwers, H.J.H.: Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods, J. Mater. Sci., 50, 6768 – 6778, (2015).
11 van Riessen, A., Chen-Tan, N.: Beneficiation of collie fly ash for synthesis of geopolymer, part 1 – beneficiation, Fuel, 106, 569 – 575 (2013a).
12 Provis, J.L., Hajimohammadi, A., White, C.E., Bernal, S.A., Myers, R.J., Winarski, R.P., Rose, V., Proffen, T.E., Llobet, A., van Deventer, J.S.J.: Nanostructural characterization of geopolymers by advanced beamline techniques, Cement Concrete Comp., 36, 56 – 64, (2013).
13 Liu, X., Aranda, M.A.G., Chen, B., Wang, P., Harder, R., Robinson, I.: In Situ Bragg Coherent Diffraction Imaging Study of a Cement Phase Microcrystal during Hydration, Cryst. Growth Des., 15, [7], 3087 – 3091, (2015).
14 Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65 – 71, (1969).
15 Scarlett, N.V.Y., Madsen, I.C.: Quantification of phases with partial or no known crystal structures, Powder Diffr., 21, 278 – 284, (2006).
16 Chen-Tan, N.W., van Riessen, A., Ly, C.V., Southam, D.C.: Determining the reactivity of a fly ash for production of geopolymer, J. Am. Ceram. Soc., 92, [4] 881 – 887, (2009).
17 Chen-Tan, N.W.: Geopolymer from a western australian fly ash, PhD Thesis, Curtin University (2010).
18 Fernández-Jimánez, A., Palomo, A., Criado, M.: Microstructure development of alkali-activated fly ash cements: a descriptive model, Cement Concrete Res., 35, 1204 – 1209, (2005).
19 ASTM C 1356 M. Standard Test Method for Quantitative Determination of Phases in Portland Cement Clinker by Microscopical Point-Count Procedure, (2001).
20 Provis, J.L., van Deventer, J.S.J.: Geopolymerisation Kinetics. 1. in situ energy dispersive x-ray diffractometry, Chem. Eng. Sci., 62, 2309 – 2317, (2007).
21 Provis, J.L., van Deventer, J.S.J.: Geopolymerisation Kinetics. 2. reaction kinetic modelling, Chem. Eng. Sci., 62, 2318 – 2329, (2007).
22 Williams R., van Riessen, A.: The first 20 hours of Geopolymerization: an in situ WAXS study of fly Ash-based geopolymers, Materials, 9, 552, (2016).
23 Williams, R.: Optimising geopolymer formation. PhD thesis, Curtin University, Perth, Western Australia (2015).
24 Jones, M.W.M., de Jonge, M.D., James, S.A., Burke, R.: Elemental mapping of the entire intact drosophila gastrointestinal tract, J. Biol. Inorg. Chem., 20, 979 – 987, (2015).
25 Rodenburg, J.M., Hurst, A.C., Cullis, A.G., Dobson, B.R., Pfeiffer, F., Bunk, O., David, C., Jefimovs, K., Johnson, I.: Hard-X-Ray Lensless Imaging of Extended Objects, Phys. Rev. Lett., 98, [3], 034801 (2007).
26 Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C., Pfeiffer, F.: High-resolution scanning x-ray diffraction microscopy, Science, 321, 379 – 382, (2008).
27 Deng, J., Vine, D.J., Chen, S., Nashed, Y.S.G., Peterka, T., Ross, R., Jacobsen, C.J.: Opportunities and limitations for combined fly-scan ptychography and fluorescence microscopy. In X-Ray Nanoimaging: Instruments and Methods II (Vol. 9592) (2015). [95920U] SPIE. doi: 10.1117/12.2190749
28 Jones, M.W.M., Phillips, N.W., van Riessen, G.A., Abbey, B., Vine, D.J., Y.S.G. Nashed, Y.S.G., Mudie, S.T., Afshar, N., Kirkham, R., Chen, B., Balaur E., de Jonge, M.D.: Simultaneous x-ray fluorescence and scanning x-ray diffraction microscopy at the australian synchrotron XFM beamline, J. Synchrotron Rad., 23, 1151 – 1157, (2016).
29 Trtik, P., Diaz, A., Guizar-Sicairos, M., Menzel, A., Bunk O.: Density mapping of hardened cement paste using ptychographic x-ray computed tomography, Cement Concrete Comp., 36, 71 – 77, (2013).
30 da Silva, J.C., Trtik, P., Diaz, A., Holler, M., Guizar-Sicairos, M., Raabe, J., Bunk, O., Menzel, A.: Mass density and water content of saturated never-dried calcium silicate hydrates, Langmuir, 31, 3779 – 3783, (2015).
31 Baier, S., Damsgaard, C., Scholz, M., Benzi, F., Rochet, A., Hoppe, R., Grunwaldt, J.: In situ ptychography of heterogeneous catalysts using hard X-Rays: high resolution imaging at ambient pressure and elevated temperature, Microsc. Microanal., 22, [1], 178 – 188, (2016).
32 Esmaeili, M., Floystad, J.B., Diaz, A., Høydalsvik,K., Guizar-Sicairos, M., Andreasen, J.W., Breiby, D.W.: Ptychographic X-ray tomography of silk fiber hydration, Macromolecules, 46, 434 – 439, (2013).
33 Høydalsvik, K., Floystad, J.B., Zhao, T., Esmaeili, M., Diaz, A., Andreasen, J.W., Mathiesen, R.H., Ronning M., Breiby, D.W.: In situ x-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates, Appl. Phys. Lett., 104, 241909/1-5, (2014).
34 Kourousias, G., Bozzini, B., Gianoncelli, A., Jones, M.W.M., Junker, M., van Riessen, G., Kiskinova, M.: Shedding light on electrodeposition dynamics tracked in situ via soft x-ray coherent diffraction imaging, Nano Research, 9, [7], 2046 – 2056, (2016).
35 Hu, Q., Aboustait, M., Kim, T., Tyler Ley, M., Hanan, J.C. Bullard, J., Winarski, R., Rose, V.: Direct three-dimensional observation of the microstructure and chemistry of C3S hydration, Cement Concrete Res., 88, 157 – 169, (2016a).
36 Hu, Q., Aboustait, M., Kim, T., Tyler Ley, M., Bullard, J.W., Scherer, G., Hanan, J.C., Rose, V., Winarski, R., Gelb, J.: Direct measurements of 3D structure, chemistry and mass density during the induction period of C3S hydration, Cement Concrete Res., 89, 14 – 26, (2016b).
37 Siddons, D.P., Kirkham, R., Ryan, C.G., De Geronimo, G., Dragone, A., Kuczewski, A.J, Li, Z.Y., Carini, G.A., Pinelli, D., Beuttenmuller, R., Elliott, D., Pfeffer, M., Tyson, T.A., Moorhead, G.F., Dunn, P.A.: Maia x-ray Microprobe Detector Array System, J. Phys. Conf. Ser., 499, 012001, (2014).
38 Paterson, D., de Jonge, M.D., Howard, D.L., Lewis, W., McKinlay, J., Starritt, A., Küsel, M., Ryan, C.G., Kirkham, R., Moorhead, G., Siddons, D.P.: The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron, AIP Conf. Proc., 1365, 219 – 222, (2011).
39 Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging, Ultramicroscopy, 109, [10], 1256 – 1262, (2009).
Copyright
Göller Verlag GmbH