• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Fly-Ash-Based Geopolymers: How the Addition of Recycled Glass or Red Mud Waste Influences the Structural and Mechanical Properties

N. Toniolo1, G. Taveri2, K. Hurle3, J.A. Roether4, P. Ercole5, I. Dlouhý2, A.R. Boccaccini1

1 Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
2 Institute of Physics of Materials, Czech Academy of Science, Žižkova 22, 616 62 Brno, Czech Republic
3 Institute of Mineralogy, University of Erlangen-Nuremberg, Schlossgarten 5a, 91054 Erlangen, Germany
4 Institute of Polymer Materials, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
5 Sasil S.p.a, Regione Dosso, 13862 Brusnengo BI, Italy

received July 7, 2017, received in revised form August 11, 2017, accepted August 27, 2017

Vol. 8, No. 3, Pages 411-420   DOI: 10.4416/JCST2017-00053

Abstract

One of the main advantages of geopolymer technology is its capability to accommodate several types of waste that would otherwise be disposed of in landfills in the production of geopolymer materials. This study investigates the possibility of substituting proportions of fly ash, normally used for the synthesis of geopolymers, with recycled glass and red mud waste. Compressive and flexural strength testing, fracture toughness determination, SEM and FTIR analyses were performed. The results show that the compressive strength decreases as the amount of glass in the geopolymer increases; on the other hand, the addition of red mud seems to improve the mechanical behavior. Moreover, on substitution of fly ash with glass and red mud, the geopolymer demonstrates a similar performance in terms of fracture toughness and flexural strength properties. The results confirm that red mud and waste glass have the potential to partially replace fly ash in geopolymer synthesis, opening thus the possibility of using geopolymer technology to reuse such residues in technical materials.

Download Full Article (PDF)

Keywords

Geopolymers, fly ash, red mud, waste glass

References

1 Davidovits, J.: Geopolymer chemistry & applications. 3rd edition. Geopolymer Institute, 2011.

2 Liew, Y.M., Kamarudin, H., Al Bakri, A.M., Bnhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C., Heah, C.: Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder, Constr. Build. Mater., 37, 440 – 451, (2012).

3 Verdolotti, L., Iannace, S., Lavorgna, M., Lamanna, R.: Geopolymerization reaction to consolidate incoherent pozzolanic soil, J. Mater. Sci., 43, 865 – 873, (2008).

4 Okoye, F., Durgaprasad, J., Singh, N.: Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete, Ceram. Int., 42, 3000 – 3006, (2016).

5 Bondar, D.: Geo-polymer concrete as a new type of sustainable construction materials. In: Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies, Coventry University and The University of Wisconsin Milwaukee Centre for By-products Utilization (2013).

6 Zhu, P., Kai, G., Kenan, F., Sanjayan, J.G., Duan, W., Collins, F.G.: Damping capacity of fly ash-based geopolymer. ICCM 2011: Proceedings of the 18th International Conference on Composite Materials. Springer, 2013.

7 Al Muhit, B., Foong, K., Alengaram, U., Jumaat, M.Z.: Geopolymer Concrete: A building material for the future, Electr. J. of Struct. Eng., 13, [1], (2013).

8 Xu, H., Van Deventer, J.: The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process, 59, 247 – 266, (2000).

9 Kupaei, R.K., Alengaram, U.J., Jumaat, M.Z.: The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete, Sci. World J., 2014, 898536, (2014).

10 Kriven, W.M.: Inorganic polysialates or "Geopolymers", Am. Ceram. Soc. Bull., 89, [4], 31 – 34, (2010).

11 Sankar, K., Kriven, W.M.: Geopolymer reinforced with E-glass leno weaves, J. Am. Ceram. Soc., 100, 2492 – 2501, (2017).

12 Sarker, P.K., Haque, R., Ramgolam, K.V.: Fracture behaviour of heat cured fly ash based geopolymer concrete, Mater. Des., 44, 580 – 586, (2013).

13 Drechsler, M., Graham, A.: Innovative Materials Technologies: Bringing resource sustainability to construction and mining industries, Inst. Quarr. Aust. Annu. Conf. Aust. 1 – 11, Oct. (2005)

14 Zhang, M., El-Korchi, T., Zhang, G., Liang, J., Tao, M.: Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers, Fuel, 134, 315 – 325, (2014).

15 Rincón, A., Giacomello, G., Pasetto, M., Bernardo, E.: Novel 'inorganic gel casting' process for the manufacturing of glass foams, J. Eur. Ceram. Soc., 37, 2227 – 2234, (2017).

16 Bobirică, C., Shim, J.-H., Pyeon, J.-H., Park, J.-Y.: Influence of waste glass on the microstructure and strength of inorganic polymers, Ceram. Int., 41, 13638 – 13649, (2015).

17 Novais, R.M., Ascensão, G., Seabra, M.P., Labrincha, J.A.: Waste glass from end-of-life fluorescent lamps as raw material in geopolymers, Waste Manage., 52, 245 – 255, (2016).

18 Kumar, A., Kumar, S.: Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Constr. Build. Mater., 38, 865 – 871, (2013).

19 Mucsi, G., Szabo, R., Racz, Á., Molnar, Z., Kristály, F., Kumar, S.: Influence of red mud on the properties of geopolymer derived from mechanically activated lignite fly ash. In: Proceedings of the Bauxite Residue Valorisation and Best Practices Conference, Leuven, (2015).

20 Jansen, D., Stabler, C., Goetz-Neunhoeffer, F., Dittrich, S., Neubauer, J.: Does ordinary portland cement contain amorphous phase? A quantitative study using an external standard method, Powder Diffr., 26, 31 – 38, (2011).

21 Prince, E.: International union for crystallography, international tables for crystallography, Volume C. Mathematical Physical and Chemical Tables, 3rd edition, Wiley, 2004.

22 Ban, T., Okada, K.: Structure refinement of mullite by the rietveld method and a new method for estimation of chemical composition, J. Am. Ceram. Soc., 75, 227 – 230, (1992).

23 Le Page, Y., Donnay, G.: Refinement of the crystal structure of low-quartz, Acta Crystallogr., B32, 227 – 230, (1976).

24 Sawada, H.: An electron density study of α-ferric oxide, Mater. Res. Bull., 31, 141 – 146, (1996).

25 Bragg, W.H.: The structure of magnetite and the spinels, Nature, 95, 561, (1915).

26 Kirfel, A., Will, G.: Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements, Acta Crystallogr., B 36, 2881 – 2890, (1980).

27 Sasaki, S., Fujino, K., Takeuchi, Y.: X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms, Proc. Jpn. Acad., 55, 43 – 48, (1979).

28 Shen, C.H., Liu, R.S., Lin, J.G., Huang, C.Y.: Phase stability study of La1.2Ca1.8Mn2O7, Mater. Res. Bull., 36, 1139 – 1148, (2001).

29 Yang, H.X., Ren, L., Downs, R.T., Costin, G.: Goethite, alpha-FeO(OH), from single-crystal data, Acta Cryst., E62, i250 – i252, (2006).

30 Smolin, Y.I., Shepelev, Y.F., Butikova, I.K., Kobyakov, I.B.: The crystal structure of cancrinite, Kristallografiya, 26, 63 – 66, (1981).

31 Saalfeld, H., Wedde, M.: Refinement of the crystal structure of gibbsite, A1 (OH) 3, Z. Kristallogr. - Crystalline Materials, 139, 129 – 135, (1974).

32 Farkas, L., Gado, P., Werner, P.E.: The structure refinement of boehmite (AlO(OH)-gamma) and the study of its structural variability based on Guinier-Hägg powder data, Mater. Res. Bull., 12, 1213 – 1219, (1977).

33 Abrahams, S.C., Bernstein, J.L.: Rutile: normal probability plot analysis and accurate measurement of crystal structure, J. Chem. Phys., 55, 3206 – 3211, (1971).

34 Jost, K.H., Ziemer, B., Seydel, R.: Redetermination of the structure of β-dicalcium silicate, Acta Cryst., B33, 1696 – 1700, (1977).

35 Withers, R.L., Thompson, J.G.: Modulation wave approach to the structural parametrization and rietveld refinement of low carnegieite, Acta Crystallogr., B49, 614 – 624, (1993).

36 Gatineau, L.: Localisation of isomorphic substitutions in muscovite, in French, Comptes Rendus Hebd. Des Séances l'Académie. 256, 4648 – 4649, (1963).

37 Phillipsi, M.W., Colville, A.A., Ribbe, P.H.: The crystal structures of two oligoclases: A comparison with low and high albite, Z. Kristallogr. – Crystalline Materials, 133, [1 – 6], 43 – 65, (1971).

38 Blasi, A., De Pol Blasi, C., Zanazzi, P.F.: A re-examination of the pellotsalo microcline: mineralogical implications and genetic considerations, Can. Mineral., 25, 527 – 537, (1987).

39 Maslen, E.N., Streltsov, V.A., Streltsova, N.R.: Electron density and optical anisotropy in rhombohedral Carbonates. III.* synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3, Acta Cryst., B51, 929 – 939, (1995).

40 Temuujin, J., Williams, R. P., Van Riessen, A.: Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature, J. Mater. Process. Technol., 209, [12], 5276 – 5280, (2009).

41 Temuujin, J., Van Riessen, A.: Effect of fly ash preliminary calcination on the properties of geopolymer, J. Hazard. Mater., 164, [2], 634 – 639, (2009).

42 Liu, M.Y.J., Chua, C.P., Alengaram, U.J., Jumaat, M.Z.: Utilization of palm oil fuel ash as binder in lightweight oil palm shell geopolymer concrete, Advances in Materials Science and Engineering, (2014).

43 Yang, H., Jiang, L., Zhang, Y., Pu, Q.: Flexural strength of cement paste beam under chemical degradation: experiments and simplified modeling, J. Mater. Civ. Eng., 25, [5], 555 – 562, (2012).

44 Pernica, D., Reis, P.N.B., Ferreira, J.A.M., Louda, P.: Effect of test conditions on the bending strength of a geopolymer-reinforced composite, J. Mater. Sci., 45, [3], 744, (2010).

45 Dlouhý, I., Boccaccini, A.R.: Reliability of chevron notch technique for fracture toughness determination in glass composites reinforced by continuous fibres, Scripta Mater., 44, [3], 531 – 537, (2001).

46 Boccaccini, A.R., Rawlings, R.D., Dlouhý, I.: Reliability of the chevron-notch technique for fracture toughness determination in glass, Mater. Sci. Eng. A, 347, [1], 102 – 108, (2003).

47 Ziegler, D., Formia, A., Tulliani, J.M., Palmero, P.: Environmentally-friendly dense and porous geopolymers using fly ash and rice husk ash as raw materials, Materials, 9, [6], 466, (2016).

48 Aitcin, P.C.: High-performance concrete demystified, Concrete International, 15, [1], 21 – 26, (1993).

49 He, J., Zhang, G.: Geopolymerization of red mud and fly ash for civil infrastructure applications. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering, 1287 – 1296, (2011).

50 Zhang, M., El-Korchi, T., Zhang, G., Liang, J., Tao, M.: Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers, Fuel, 134, 315 – 325, (2014).

51 Kourti, I., Rani, D.A., Deegan, D., Boccaccini, A.R., Cheeseman, C.R.: Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues, J. Hazard. Mater, 176, [1], 704 – 709, (2010).

52 Kamseu, E., Bignozzi, M. C., Melo, U. C., Leonelli, C., Sglavo, V. M.: Design of inorganic polymer cements: Effects of matrix strengthening on microstructure, Constr. Build. Mater., 38, 1135 – 1145, (2013).

53 Torres-Carrasco, M., Palomo, J.G., Puertas, F.: Sodium silicate solutions from dissolution of glasswastes. statistical analysis, Mater. Construcc, 64, [314], 014, (2014).

54 Cyr, M., Idir, R., Poinot, T.: Properties of inorganic polymer (geopolymer) mortars made of glass cullet, J. Mater. Sci., 47, [6], 2782 – 2797, (2012).

55 Rosas-Casarez, C.A., Arredondo-Rea, S.P., Gómez-Soberón, J.M., Alamaral-Sánchez, J.L., Corral-Higuera, R., Chinchillas-Chinchillas, M.J., Acuña-Agüero, O.H.: Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. In: Proceedings of the International Conference on Advances in Civil and Structural Engineering — CSE, 2014.

56 Lin, K.L., Shiu, H.S., Shie, J.L., Cheng, T.W., Hwang, C.L.: Effect of composition on characteristics of thin film transistor liquid crystal display (TFT-LCD) waste glass-metakaolin-based geopolymers, Constr. Build. Mater., 36, 501 – 507, (2012).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH