Articles
All articles | Recent articles
Fly-Ash-Based Geopolymers: How the Addition of Recycled Glass or Red Mud Waste Influences the Structural and Mechanical Properties
N. Toniolo1, G. Taveri2, K. Hurle3, J.A. Roether4, P. Ercole5, I. Dlouhý2, A.R. Boccaccini1
1 Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
2 Institute of Physics of Materials, Czech Academy of Science, Žižkova 22, 616 62 Brno, Czech Republic
3 Institute of Mineralogy, University of Erlangen-Nuremberg, Schlossgarten 5a, 91054 Erlangen, Germany
4 Institute of Polymer Materials, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
5 Sasil S.p.a, Regione Dosso, 13862 Brusnengo BI, Italy
received July 7, 2017, received in revised form August 11, 2017, accepted August 27, 2017
Vol. 8, No. 3, Pages 411-420 DOI: 10.4416/JCST2017-00053
Abstract
One of the main advantages of geopolymer technology is its capability to accommodate several types of waste that would otherwise be disposed of in landfills in the production of geopolymer materials. This study investigates the possibility of substituting proportions of fly ash, normally used for the synthesis of geopolymers, with recycled glass and red mud waste. Compressive and flexural strength testing, fracture toughness determination, SEM and FTIR analyses were performed. The results show that the compressive strength decreases as the amount of glass in the geopolymer increases; on the other hand, the addition of red mud seems to improve the mechanical behavior. Moreover, on substitution of fly ash with glass and red mud, the geopolymer demonstrates a similar performance in terms of fracture toughness and flexural strength properties. The results confirm that red mud and waste glass have the potential to partially replace fly ash in geopolymer synthesis, opening thus the possibility of using geopolymer technology to reuse such residues in technical materials.
Download Full Article (PDF)
Keywords
Geopolymers, fly ash, red mud, waste glass
References
1 Davidovits, J.: Geopolymer chemistry & applications. 3rd edition. Geopolymer Institute, 2011.
2 Liew, Y.M., Kamarudin, H., Al Bakri, A.M., Bnhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C., Heah, C.: Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder, Constr. Build. Mater., 37, 440 – 451, (2012).
3 Verdolotti, L., Iannace, S., Lavorgna, M., Lamanna, R.: Geopolymerization reaction to consolidate incoherent pozzolanic soil, J. Mater. Sci., 43, 865 – 873, (2008).
4 Okoye, F., Durgaprasad, J., Singh, N.: Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete, Ceram. Int., 42, 3000 – 3006, (2016).
5 Bondar, D.: Geo-polymer concrete as a new type of sustainable construction materials. In: Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies, Coventry University and The University of Wisconsin Milwaukee Centre for By-products Utilization (2013).
6 Zhu, P., Kai, G., Kenan, F., Sanjayan, J.G., Duan, W., Collins, F.G.: Damping capacity of fly ash-based geopolymer. ICCM 2011: Proceedings of the 18th International Conference on Composite Materials. Springer, 2013.
7 Al Muhit, B., Foong, K., Alengaram, U., Jumaat, M.Z.: Geopolymer Concrete: A building material for the future, Electr. J. of Struct. Eng., 13, [1], (2013).
8 Xu, H., Van Deventer, J.: The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process, 59, 247 – 266, (2000).
9 Kupaei, R.K., Alengaram, U.J., Jumaat, M.Z.: The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete, Sci. World J., 2014, 898536, (2014).
10 Kriven, W.M.: Inorganic polysialates or "Geopolymers", Am. Ceram. Soc. Bull., 89, [4], 31 – 34, (2010).
11 Sankar, K., Kriven, W.M.: Geopolymer reinforced with E-glass leno weaves, J. Am. Ceram. Soc., 100, 2492 – 2501, (2017).
12 Sarker, P.K., Haque, R., Ramgolam, K.V.: Fracture behaviour of heat cured fly ash based geopolymer concrete, Mater. Des., 44, 580 – 586, (2013).
13 Drechsler, M., Graham, A.: Innovative Materials Technologies: Bringing resource sustainability to construction and mining industries, Inst. Quarr. Aust. Annu. Conf. Aust. 1 – 11, Oct. (2005)
14 Zhang, M., El-Korchi, T., Zhang, G., Liang, J., Tao, M.: Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers, Fuel, 134, 315 – 325, (2014).
15 Rincón, A., Giacomello, G., Pasetto, M., Bernardo, E.: Novel 'inorganic gel casting' process for the manufacturing of glass foams, J. Eur. Ceram. Soc., 37, 2227 – 2234, (2017).
16 Bobirică, C., Shim, J.-H., Pyeon, J.-H., Park, J.-Y.: Influence of waste glass on the microstructure and strength of inorganic polymers, Ceram. Int., 41, 13638 – 13649, (2015).
17 Novais, R.M., Ascensão, G., Seabra, M.P., Labrincha, J.A.: Waste glass from end-of-life fluorescent lamps as raw material in geopolymers, Waste Manage., 52, 245 – 255, (2016).
18 Kumar, A., Kumar, S.: Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Constr. Build. Mater., 38, 865 – 871, (2013).
19 Mucsi, G., Szabo, R., Racz, Á., Molnar, Z., Kristály, F., Kumar, S.: Influence of red mud on the properties of geopolymer derived from mechanically activated lignite fly ash. In: Proceedings of the Bauxite Residue Valorisation and Best Practices Conference, Leuven, (2015).
20 Jansen, D., Stabler, C., Goetz-Neunhoeffer, F., Dittrich, S., Neubauer, J.: Does ordinary portland cement contain amorphous phase? A quantitative study using an external standard method, Powder Diffr., 26, 31 – 38, (2011).
21 Prince, E.: International union for crystallography, international tables for crystallography, Volume C. Mathematical Physical and Chemical Tables, 3rd edition, Wiley, 2004.
22 Ban, T., Okada, K.: Structure refinement of mullite by the rietveld method and a new method for estimation of chemical composition, J. Am. Ceram. Soc., 75, 227 – 230, (1992).
23 Le Page, Y., Donnay, G.: Refinement of the crystal structure of low-quartz, Acta Crystallogr., B32, 227 – 230, (1976).
24 Sawada, H.: An electron density study of α-ferric oxide, Mater. Res. Bull., 31, 141 – 146, (1996).
25 Bragg, W.H.: The structure of magnetite and the spinels, Nature, 95, 561, (1915).
26 Kirfel, A., Will, G.: Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements, Acta Crystallogr., B 36, 2881 – 2890, (1980).
27 Sasaki, S., Fujino, K., Takeuchi, Y.: X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms, Proc. Jpn. Acad., 55, 43 – 48, (1979).
28 Shen, C.H., Liu, R.S., Lin, J.G., Huang, C.Y.: Phase stability study of La1.2Ca1.8Mn2O7, Mater. Res. Bull., 36, 1139 – 1148, (2001).
29 Yang, H.X., Ren, L., Downs, R.T., Costin, G.: Goethite, alpha-FeO(OH), from single-crystal data, Acta Cryst., E62, i250 – i252, (2006).
30 Smolin, Y.I., Shepelev, Y.F., Butikova, I.K., Kobyakov, I.B.: The crystal structure of cancrinite, Kristallografiya, 26, 63 – 66, (1981).
31 Saalfeld, H., Wedde, M.: Refinement of the crystal structure of gibbsite, A1 (OH) 3, Z. Kristallogr. - Crystalline Materials, 139, 129 – 135, (1974).
32 Farkas, L., Gado, P., Werner, P.E.: The structure refinement of boehmite (AlO(OH)-gamma) and the study of its structural variability based on Guinier-Hägg powder data, Mater. Res. Bull., 12, 1213 – 1219, (1977).
33 Abrahams, S.C., Bernstein, J.L.: Rutile: normal probability plot analysis and accurate measurement of crystal structure, J. Chem. Phys., 55, 3206 – 3211, (1971).
34 Jost, K.H., Ziemer, B., Seydel, R.: Redetermination of the structure of β-dicalcium silicate, Acta Cryst., B33, 1696 – 1700, (1977).
35 Withers, R.L., Thompson, J.G.: Modulation wave approach to the structural parametrization and rietveld refinement of low carnegieite, Acta Crystallogr., B49, 614 – 624, (1993).
36 Gatineau, L.: Localisation of isomorphic substitutions in muscovite, in French, Comptes Rendus Hebd. Des Séances l'Académie. 256, 4648 – 4649, (1963).
37 Phillipsi, M.W., Colville, A.A., Ribbe, P.H.: The crystal structures of two oligoclases: A comparison with low and high albite, Z. Kristallogr. – Crystalline Materials, 133, [1 – 6], 43 – 65, (1971).
38 Blasi, A., De Pol Blasi, C., Zanazzi, P.F.: A re-examination of the pellotsalo microcline: mineralogical implications and genetic considerations, Can. Mineral., 25, 527 – 537, (1987).
39 Maslen, E.N., Streltsov, V.A., Streltsova, N.R.: Electron density and optical anisotropy in rhombohedral Carbonates. III.* synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3, Acta Cryst., B51, 929 – 939, (1995).
40 Temuujin, J., Williams, R. P., Van Riessen, A.: Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature, J. Mater. Process. Technol., 209, [12], 5276 – 5280, (2009).
41 Temuujin, J., Van Riessen, A.: Effect of fly ash preliminary calcination on the properties of geopolymer, J. Hazard. Mater., 164, [2], 634 – 639, (2009).
42 Liu, M.Y.J., Chua, C.P., Alengaram, U.J., Jumaat, M.Z.: Utilization of palm oil fuel ash as binder in lightweight oil palm shell geopolymer concrete, Advances in Materials Science and Engineering, (2014).
43 Yang, H., Jiang, L., Zhang, Y., Pu, Q.: Flexural strength of cement paste beam under chemical degradation: experiments and simplified modeling, J. Mater. Civ. Eng., 25, [5], 555 – 562, (2012).
44 Pernica, D., Reis, P.N.B., Ferreira, J.A.M., Louda, P.: Effect of test conditions on the bending strength of a geopolymer-reinforced composite, J. Mater. Sci., 45, [3], 744, (2010).
45 Dlouhý, I., Boccaccini, A.R.: Reliability of chevron notch technique for fracture toughness determination in glass composites reinforced by continuous fibres, Scripta Mater., 44, [3], 531 – 537, (2001).
46 Boccaccini, A.R., Rawlings, R.D., Dlouhý, I.: Reliability of the chevron-notch technique for fracture toughness determination in glass, Mater. Sci. Eng. A, 347, [1], 102 – 108, (2003).
47 Ziegler, D., Formia, A., Tulliani, J.M., Palmero, P.: Environmentally-friendly dense and porous geopolymers using fly ash and rice husk ash as raw materials, Materials, 9, [6], 466, (2016).
48 Aitcin, P.C.: High-performance concrete demystified, Concrete International, 15, [1], 21 – 26, (1993).
49 He, J., Zhang, G.: Geopolymerization of red mud and fly ash for civil infrastructure applications. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering, 1287 – 1296, (2011).
50 Zhang, M., El-Korchi, T., Zhang, G., Liang, J., Tao, M.: Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers, Fuel, 134, 315 – 325, (2014).
51 Kourti, I., Rani, D.A., Deegan, D., Boccaccini, A.R., Cheeseman, C.R.: Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues, J. Hazard. Mater, 176, [1], 704 – 709, (2010).
52 Kamseu, E., Bignozzi, M. C., Melo, U. C., Leonelli, C., Sglavo, V. M.: Design of inorganic polymer cements: Effects of matrix strengthening on microstructure, Constr. Build. Mater., 38, 1135 – 1145, (2013).
53 Torres-Carrasco, M., Palomo, J.G., Puertas, F.: Sodium silicate solutions from dissolution of glasswastes. statistical analysis, Mater. Construcc, 64, [314], 014, (2014).
54 Cyr, M., Idir, R., Poinot, T.: Properties of inorganic polymer (geopolymer) mortars made of glass cullet, J. Mater. Sci., 47, [6], 2782 – 2797, (2012).
55 Rosas-Casarez, C.A., Arredondo-Rea, S.P., Gómez-Soberón, J.M., Alamaral-Sánchez, J.L., Corral-Higuera, R., Chinchillas-Chinchillas, M.J., Acuña-Agüero, O.H.: Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. In: Proceedings of the International Conference on Advances in Civil and Structural Engineering — CSE, 2014.
56 Lin, K.L., Shiu, H.S., Shie, J.L., Cheng, T.W., Hwang, C.L.: Effect of composition on characteristics of thin film transistor liquid crystal display (TFT-LCD) waste glass-metakaolin-based geopolymers, Constr. Build. Mater., 36, 501 – 507, (2012).
Copyright
Göller Verlag GmbH