Articles
All articles | Recent articles
Boronhydride-Geopolymer Composites
C.H. Rüscher
Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, 30167 D-Hannover, Germany
received June 21, 2017, received in revised form August 8, 2017, accepted August 24, 2017
Vol. 8, No. 3, Pages 399-410 DOI: 10.4416/JCST2017-00051
Abstract
Sodium tetrahydroborate (NaBH4 = SB) and ammonia-borane (NH3BH3 = AB) were dissolved in sodium aluminate and silicate solutions. Bringing them together caused immediate gel formation and recrystallization of SB and AB during drying. The gel forms geopolymer (G) type units, which enclose and protect the SB and AB crystals inside. SB-G composites are stable over a long time without any loss in SB. An optimized SB-G releases about 1820 L hydrogen per kg, i.e. containing an equivalent of about 80 % of pure SB (2270 L/kg) obtained by means of acidic titration. SB and SB-G remain stable up to 400 °C in vacuum and under inert gas conditions (He, Ar, N2). In air, a reaction starts at about 240 °C, leading to a complete transformation to NaBO2 above about 320 °C. For SB-G, this reaction is retarded by 50 °C. In the case of AB-G, IR-absorption spectra indicate that the geopolymer matrix consists of mainly sialate units (Si-O-Al-O). Heating experiments at temperatures of 120, 150 and 300 °C show the formation of polyaminoboranes (PAB) and polyiminoboranes (PIB). The underlying reactions could be related to hydrogen release in two exothermic peaks observed at around 122 °C and 160 °C. There are strong indications that DADB, the diammoniate of diborane, (NH3BH2)[BH]4, forms prior to hydrogen release in the first step.
Download Full Article (PDF)
Keywords
Hydrogen storage, AB-geopolymer, SB-geopolymer
References
1 Tang, Z., Chen, X., Chen, H., Wu, L., Yu, X.: Metal-free catalysis of ammonia-borane dehydrogenation/regeneration for a highly efficient and facilely recyclable hydrogen storage material, Angew. Chem. Int. Ed., 52, 5832 – 5835, (2013).
2 Gutowska, A., Li, L., Shin, Y., Wang, C.M., Li, X.S., Linehan, J.C., Smith, R.S., Kay, B.D., Schmid, B., Shaw, W., Gutowski, M., Autrey, T.: Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane, Angew. Chem. Int. Ed., 44, 3378 – 3582, (2005).
3 Zhang, T., Yang, X., Yang, S., Li, D., Cheng, F., Tao, Z., Chen, J.: Silica hollow nanospheres as new nanoscaffold materials to enhance hydrogen releasing from ammonia borane, Phys. Chem. Chem. Phys., 13, 18592 – 18599, (2011).
4 Li, P.-Z., Aranishi, K., Xu, Q.: Zif-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane, Chem. Commun., 48, 3173 – 3175, (2012).
5 Nielsen, T.K., Karkamkar, A., Bowden, M., Besenbacher, F., Jensen, T.R., Autrey, T.: Methods to stabilize and destabilize ammonium borohydride, Dalton T., 42, 680 – 687, (2013).
6 Barrer, R.M.: Hydrothermal chemistry of zeolites. London Academic Press, 384 (1982).
7 Buhl, J.C., Gesing, T., Rüscher, C.H.: Synthesis, crystal structure and thermal stability of tetrahydroborate sodalite Na8[AlSiO4]6(BH4)2, Micropor. Mesopor. Mat., 80, 57 – 63, (2005).
8 Buhl, J.C., Gesing, T., Höfs, T., Rüscher, C.H.: Synthesis and crystal structure of gallosilicate- and aluminogermanate tetrahydroborate sodalites Na8[GaSiO4]6(BH4)2 and Na8[AlGeO4]6(BH4)2, J. Solid State Chem., 179, 3877 – 3882, (2006).
9 Buhl, J.C., Schomborg, L., Rüscher, C.H.: Tetrahydroborate sodalite nanocrystals: low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro-crystals, Micropor. Mesopor. Mat., 132, 210 – 218, (2010).
10 Buhl, J.C., Schomborg, L., Rüscher, C.H.: Enclosure of sodium tetrabydroborate (NaBH4) in solidified aluminosilicate gels and microporous crystalline solids for fuel processing, in Hydrogen Storage, J. Liu ed., INTECH ISBN 978 – 953 – 51 – 0371 – 6, free online editons, Chapter 3, 49 – 90, (2012).
11 Rüscher, C.H., Schomborg, L., Schulz, A., Buhl, J.C.: Basic research on geopolymer gels for production of green binders and hydrogen storage. In: Developments in strategic materials and computational design IV, ed. by W.M. Kriven, J. Wang, Y. Zhou, A.L. Gyekenyesi, Ceram. Eng. Sci. Proc., 34, [10], 97 – 114, (2013).
12 Ponce de Leon, C., Walsh, F.C., Pletcher, D., Browning, D.J., Lakeman, J.B.: Review: direct borohydride fuel cells, J. Power Sources, 155, 172 – 181, (2006). Compare also Z. P. Li, B. H. Liu, K. Arai, K. Asaba, S. Suda. Evaluation of alkaline borohydride solutions as the fuel for fuel cell, J. Power Sources, 126, 24 – 33, (2004).
13 Schomborg, L., Rüscher, C.H., Buhl, J.C., Kiesel, F.: NaBH4 geopolymer composites. In: Developments in strategic materials and computational design V, ed. by W.M. Kriven, D. Zhu, K.I. Moon, T. Hwang, J. Wang, C. Lewinsohn, Y. Zhou, Ceram. Eng. Sci. Proc., 35, [8], 3 – 14, (2014).
14 Schomborg, L., Assi, Z., Buhl, J.C., Rüscher, C.H., Wark, M.: Ammonia-borane geopolymer (AB-G) composite. In: Developments in strategic materials and computational design VI, ed. by W.M. Kriven, J. Wang, D. Zhou, T. Fischer, Ceram. Eng. Sci. Proc., 36, [8], 21 – 35, (2015).
15 Filinchuk, Y., Hagemann, H.: Structure and properties of NaBH4*2H2O and NaBH4, Eur. J. Inorg. Chem., 3127 – 3133, (2008).
16 Rüscher, C.H., Salman, N., Buhl, J.C., Lutz, W.: Letter to the Editor: relation between growth-size and chemical composition of X and Y, Micropor. Mesop. Mat., 92, 309 – 311, (2006).
17 Rüscher, C.H., Schomborg, L., Assi, Z., Buhl, J.C.: NH3BH3 and NaBH4 enclosed in geopolymers and zeolites. In Ceramics for environmental sytems, ed. by L. Wang, N. Imanaka, W.M. Kriven, M. Fukushima, G. Kale, Ceram. Trans., 257, 105 – 118, (2015).
18 Schomborg, L.: Aluminosilicate borohydrides: NaBH4 embedded in sodalite and gel structures. Diss.University of Hannover. Leibniz Information Centre for Science and Technology University Library Catalogue (LUH, TIBKAT), 1 – 204, (2015).
19 Urgnani, J., Torres, F.J., Palumbo, M., Baricco, M.: Hydrogen release from solid state NaBH4, Int. J. Hydrogen Energ., 33, 3111 – 3115, (2008).
20 Assi, Z., Schomborg, L., C. H. Rüscher, C.H.: Investigations of the thermally induced hydrogen release of NaBH4, NH3BH3 and their geopolymer composites. In Development in Strategic Ceramic Materials II: A collection of papers presented on the 40th international conference on advanced ceramics and composites. Ed. by W.M. Kriven. J. Wang, Y. Zhou, D. Zhu, G.K. Costa, 37, [7], 93 – 108, (2016).
21 Rüscher, C.H., Mielcarek, E.M., Wongpa, J., Jaturapitakkul, C., Jirasit, F., Lohaus, L.: Silicate-, aluminosilicate and calciumsilicate gels for building materials: chemical and mechanical properties during ageing, Eur. J. Mineral., 23, 111 – 124, (2011).
22 Hamilton, C.W., Baker, R.T., Staubitz, A., Manners, I.: B-N compounds for chemical hydrogen storage, Chem. Soc. Rev., 38, 279 – 293, (2009).
23 Frueh, S., Kellet, R., Mallery, C., Molter, T., Willis, W.S., King'ondu, C., Suib, S.L.: Pyrolytic decomposition of ammonia borane to boron nitride, Inorg. Chem., 50, 783 – 792, (2011).
24 Fang, Z., Luo, J., Kang, X., Xia, H., Wang, S., Wen, W., Zhou, X., Wang, P.: Facile solid-phase synthesis of the diammoniate of diborane and its thermal decomposition behavior, Phys. Chem. Chem. Phys., 13, 7508 – 7513, (2011).
25 Zhang, J., Zhao, Y., Akins, D.L., Lee, J.W.: Thermal decomposition and spectroscopic studies of preheated ammonia borane, J. Phys. Chem., C 114, 19529 – 19534, (2010).
26 Assi, Z.: Structural and chemical investigations of the thermal behavior of B-H based materials (NaBH4 and NH3BH3) and their oxidation metaborate by-products. Diss. University of Hannover. Leibniz Information Centre for Science and Technology University Library Catalogue (LUH, TIBKAT), 1 – 201, (2016).
27 Stowe, A.C., Shaw, W.J., Linehan, J.C., Schmid, B., Autrey, T.: In-situ solid state 11B MAS NMR studies of the thermal decomposition of ammonia borane: Mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material, Phys. Chem. Chem. Phys., 9, 1831 – 1836, (2007).
28 Bowden, M., Autrey, T., Brown, I., Ryan, M.: The thermal decomposition of ammonia borane: A potential hydrogen storage material, Curr. Appl. Phys., 8, 498 – 500, (2008).
Copyright
Göller Verlag GmbH