• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Boronhydride-Geopolymer Composites

C.H. Rüscher

Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, 30167 D-Hannover, Germany

received June 21, 2017, received in revised form August 8, 2017, accepted August 24, 2017

Vol. 8, No. 3, Pages 399-410   DOI: 10.4416/JCST2017-00051

Abstract

Sodium tetrahydroborate (NaBH4 = SB) and ammonia-borane (NH3BH3 = AB) were dissolved in sodium aluminate and silicate solutions. Bringing them together caused immediate gel formation and recrystallization of SB and AB during drying. The gel forms geopolymer (G) type units, which enclose and protect the SB and AB crystals inside. SB-G composites are stable over a long time without any loss in SB. An optimized SB-G releases about 1820 L hydrogen per kg, i.e. containing an equivalent of about 80 % of pure SB (2270 L/kg) obtained by means of acidic titration. SB and SB-G remain stable up to 400 °C in vacuum and under inert gas conditions (He, Ar, N2). In air, a reaction starts at about 240 °C, leading to a complete transformation to NaBO2 above about 320 °C. For SB-G, this reaction is retarded by 50 °C. In the case of AB-G, IR-absorption spectra indicate that the geopolymer matrix consists of mainly sialate units (Si-O-Al-O). Heating experiments at temperatures of 120, 150 and 300 °C show the formation of polyaminoboranes (PAB) and polyiminoboranes (PIB). The underlying reactions could be related to hydrogen release in two exothermic peaks observed at around 122 °C and 160 °C. There are strong indications that DADB, the diammoniate of diborane, (NH3BH2)[BH]4, forms prior to hydrogen release in the first step.

Download Full Article (PDF)

Keywords

Hydrogen storage, AB-geopolymer, SB-geopolymer

References

1 Tang, Z., Chen, X., Chen, H., Wu, L., Yu, X.: Metal-free ca­talysis of ammonia-borane dehydrogenation/regeneration for a highly efficient and facilely recyclable hydrogen storage material, Angew. Chem. Int. Ed., 52, 5832 – 5835, (2013).

2 Gutowska, A., Li, L., Shin, Y., Wang, C.M., Li, X.S., Linehan, J.C., Smith, R.S., Kay, B.D., Schmid, B., Shaw, W., Gutowski, M., Autrey, T.: Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane, Angew. Chem. Int. Ed., 44, 3378 – 3582, (2005).

3 Zhang, T., Yang, X., Yang, S., Li, D., Cheng, F., Tao, Z., Chen, J.: Silica hollow nanospheres as new nanoscaffold materials to enhance hydrogen releasing from ammonia borane, Phys. Chem. Chem. Phys., 13, 18592 – 18599, (2011).

4 Li, P.-Z., Aranishi, K., Xu, Q.: Zif-8 immobilized nickel nanoparticles: Highly effective catalysts for hydrogen gen­eration from hydrolysis of ammonia borane, Chem. Commun., 48, 3173 – 3175, (2012).

5 Nielsen, T.K., Karkamkar, A., Bowden, M., Besenbacher, F., Jensen, T.R., Autrey, T.: Methods to stabilize and destabilize ammonium borohydride, Dalton T., 42, 680 – 687, (2013).

6 Barrer, R.M.: Hydrothermal chemistry of zeolites. London Academic Press, 384 (1982).

7 Buhl, J.C., Gesing, T., Rüscher, C.H.: Synthesis, crystal structure and thermal stability of tetrahydroborate sodalite Na8[AlSiO4]6(BH4)2, Micropor. Mesopor. Mat., 80, 57 – 63, (2005).

8 Buhl, J.C., Gesing, T., Höfs, T., Rüscher, C.H.: Synthesis and crystal structure of gallosilicate- and aluminogermanate tetrahydroborate sodalites Na8[GaSiO4]6(BH4)2 and Na8[AlGeO4]6(BH4)2, J. Solid State Chem., 179, 3877 – 3882, (2006).

9 Buhl, J.C., Schomborg, L., Rüscher, C.H.: Tetrahydroborate sodalite nanocrystals: low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro-crystals, Micropor. Mesopor. Mat., 132, 210 – 218, (2010).

10 Buhl, J.C., Schomborg, L., Rüscher, C.H.: Enclosure of sodium tetrabydroborate (NaBH4) in solidified aluminosilicate gels and microporous crystalline solids for fuel processing, in Hydrogen Storage, J. Liu ed., INTECH ISBN 978 – 953 – 51 – 0371 – 6, free online editons, Chapter 3, 49 – 90, (2012).

11 Rüscher, C.H., Schomborg, L., Schulz, A., Buhl, J.C.: Basic research on geopolymer gels for production of green binders and hydrogen storage. In: Developments in strategic materials and computational design IV, ed. by W.M. Kriven, J. Wang, Y. Zhou, A.L. Gyekenyesi, Ceram. Eng. Sci. Proc., 34, [10], 97 – 114, (2013).

12 Ponce de Leon, C., Walsh, F.C., Pletcher, D., Browning, D.J., Lakeman, J.B.: Review: direct borohydride fuel cells, J. Power Sources, 155, 172 – 181, (2006). Compare also Z. P. Li, B. H. Liu, K. Arai, K. Asaba, S. Suda. Evaluation of alkaline borohydride solutions as the fuel for fuel cell, J. Power Sources, 126, 24 – 33, (2004).

13 Schomborg, L., Rüscher, C.H., Buhl, J.C., Kiesel, F.: NaBH4 geopolymer composites. In: Developments in strategic ma­terials and computational design V, ed. by W.M. Kriven, D. Zhu, K.I. Moon, T. Hwang, J. Wang, C. Lewinsohn, Y. Zhou, Ceram. Eng. Sci. Proc., 35, [8], 3 – 14, (2014).

14 Schomborg, L., Assi, Z., Buhl, J.C., Rüscher, C.H., Wark, M.: Ammonia-borane geopolymer (AB-G) composite. In: Developments in strategic materials and computational design VI, ed. by W.M. Kriven, J. Wang, D. Zhou, T. Fischer, Ceram. Eng. Sci. Proc., 36, [8], 21 – 35, (2015).

15 Filinchuk, Y., Hagemann, H.: Structure and properties of NaBH4*2H2O and NaBH4, Eur. J. Inorg. Chem., 3127 – 3133, (2008).

16 Rüscher, C.H., Salman, N., Buhl, J.C., Lutz, W.: Letter to the Editor: relation between growth-size and chemical composition of X and Y, Micropor. Mesop. Mat., 92, 309 – 311, (2006).

17 Rüscher, C.H., Schomborg, L., Assi, Z., Buhl, J.C.: NH3BH3 and NaBH4 enclosed in geopolymers and zeolites. In Ceramics for environmental sytems, ed. by L. Wang, N. Imanaka, W.M. Kriven, M. Fukushima, G. Kale, Ceram. Trans., 257, 105 – 118, (2015).

18 Schomborg, L.: Aluminosilicate borohydrides: NaBH4 embedded in sodalite and gel structures. Diss.University of Hannover. Leibniz Information Centre for Science and Technology University Library Catalogue (LUH, TIBKAT), 1 – 204, (2015).

19 Urgnani, J., Torres, F.J., Palumbo, M., Baricco, M.: Hydrogen release from solid state NaBH4, Int. J. Hydrogen Energ., 33, 3111 – 3115, (2008).

20 Assi, Z., Schomborg, L., C. H. Rüscher, C.H.: Investigations of the thermally induced hydrogen release of NaBH4, NH3BH3 and their geopolymer composites. In Development in Strategic Ceramic Materials II: A collection of papers presented on the 40th international conference on advanced ceramics and composites. Ed. by W.M. Kriven. J. Wang, Y. Zhou, D. Zhu, G.K. Costa, 37, [7], 93 – 108, (2016).

21 Rüscher, C.H., Mielcarek, E.M., Wongpa, J., Jaturapitakkul, C., Jirasit, F., Lohaus, L.: Silicate-, aluminosilicate and cal­ciumsilicate gels for building materials: chemical and mechanical properties during ageing, Eur. J. Mineral., 23, 111 – 124, (2011).

22 Hamilton, C.W., Baker, R.T., Staubitz, A., Manners, I.: B-N compounds for chemical hydrogen storage, Chem. Soc. Rev., 38, 279 – 293, (2009).

23 Frueh, S., Kellet, R., Mallery, C., Molter, T., Willis, W.S., King'ondu, C., Suib, S.L.: Pyrolytic decomposition of ammonia borane to boron nitride, Inorg. Chem., 50, 783 – 792, (2011).

24 Fang, Z., Luo, J., Kang, X., Xia, H., Wang, S., Wen, W., Zhou, X., Wang, P.: Facile solid-phase synthesis of the diammoniate of diborane and its thermal decomposition behavior, Phys. Chem. Chem. Phys., 13, 7508 – 7513, (2011).

25 Zhang, J., Zhao, Y., Akins, D.L., Lee, J.W.: Thermal decomposition and spectroscopic studies of preheated ammonia borane, J. Phys. Chem., C 114, 19529 – 19534, (2010).

26 Assi, Z.: Structural and chemical investigations of the thermal behavior of B-H based materials (NaBH4 and NH3BH3) and their oxidation metaborate by-products. Diss. University of Hannover. Leibniz Information Centre for Science and Technology University Library Catalogue (LUH, TIBKAT), 1 – 201, (2016).

27 Stowe, A.C., Shaw, W.J., Linehan, J.C., Schmid, B., Autrey, T.: In-situ solid state 11B MAS NMR studies of the thermal decomposition of ammonia borane: Mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material, Phys. Chem. Chem. Phys., 9, 1831 – 1836, (2007).

28 Bowden, M., Autrey, T., Brown, I., Ryan, M.: The thermal decomposition of ammonia borane: A potential hydrogen storage material, Curr. Appl. Phys., 8, 498 – 500, (2008).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH