Articles
All articles | Recent articles
A Review of Particle- and Fiber-Reinforced Metakaolin-Based Geopolymer Composites
R.A. Sá Ribeiro1,2, M.G. Sá Ribeiro2, W.M. Kriven1
1 Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801 USA
2 Structural Engineering Laboratory, National Institute for Amazonian Research, Manaus, AM, 69067 – 375 Brazil
received July 1, 2017, received in revised form August 7, 2017, accepted August 22, 2017
Vol. 8, No. 3, Pages 307-322 DOI: 10.4416/JCST2017-00048
Abstract
Research on reinforced metakaolin-based geopolymers for structural applications is reviewed. Geopolymers have been synthesized using metakaolin produced from kaolinite extracted from several regional soils. Kaolin is converted into metakaolin by calcination from 650 °C up to 800 °C. To obtain higher strength and stiffness, the geopolymer matrix is reinforced with particles and fibers. In addition, synthetic and natural particles and fibers have been used to enhance durability, thermal properties and shrinkage ratio of lighter geopolymer composites. Owing to the unavailability of a standard for processing and testing geopolymer composites, different laboratories use differing procedures, making data comparison very difficult. The promising market of geopolymer composites for the sustainable construction industry would benefit from a uniform standard for laboratory processing and testing. This would contribute to the creation of a large and reliable data bank, and facilitate the manufacture and certification of geopolymeric sustainable construction materials.
Download Full Article (PDF)
Keywords
Geopolymer, metakaolin, particle composite, fiber composite, kaolin
References
1 Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloid. Surface. A, 269, 47 – 58, (2005). doi: 10.1016/j.colsurfa.2005.06.060
2 Görhan, G., Aslaner, R., Sinik, O.: The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste, Compos. Part B-Eng., 97, 329 – 335, (2016).
3 Hussain, M., Varely, R., Cheng, Y.B., Mathys, Z., Simon, G.P.: Synthesis and thermal behavior of inorganic-organic hybrid geopolymer composites, J. Appl. Polym. Sci., 96, 112 – 121, (2005).
4 Heah, C.Y., Kamarudin, H., Mustafa Al Bakri, A.M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaid, C.M., Liew, Y.M.: Effect of curing profile on Kaolin-based geopolymers, Physcs. Proc., 22, 305 – 311, (2011).
5 Davidovits, J.: 30 years of success and failures in geopolymer applications – market trends and potential breakthroughs. In: Geopolymer 2002 Conference Keynotes, October 28 – 29, Melbourne, Australia, 1 – 15, 2002.
6 Kriven, W.M.: Inorganic polysialates or "geopolymers", Am. Ceram. Soc. Bull., 89, [4], 31 – 34, (2010).
7 Kriven, W.M.: Geopolymer-based composites. In: Ceramics and Carbon Matrix Composites, Vol 5, edited by Marina RugglesWrenn. Part of an 8-Volume set of books entitled Comprehensive Composite Materials II, Peter Beaumont and Carl Zweben, Co-editors-in-chief. Published by Elsevier, Oxford, UK, in press 2017.
8 Davidovits, J.: Geopolymer cement to minimize carbon-dioxide greenhouse-warming. In: Cement-based materials: Present, future and environmental aspects, Ceram. Trans., 37, 165 – 182, (1993).
9 Davidovits, J.: Carbon-dioxide greenhouse-warming: what future for Portland cement. In: Emerging Technologies Symposium on Cements and Concretes in the Global Environment, March 1993, Portland Cement Association, Chicago, Illinois, 21, 1993.
10 Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The role of inorganic polymer technology in development of ‘green concrete’, Cem. Concr. Res., 37, 1590 – 7, (2007).
11 van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G.: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste Biomass Valor, 1, 145 – 55, (2010).
12 Davidovits, J.: Geopolymer cement, a review. Institut Géopolymère, St. Quentin, France, http://www.geopolymer.org/fichiers_pdf/GPCement2013.pdf, 2013.
13 Barbosa, V.F.F., MacKenzie, K.J.D.: Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater. Res. Bull., 38, [2], 319 – 31, (2003).
14 Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S.J.: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers, Colloid. Surface. A, 292, 8 – 20, (2007). doi: 10.1016/j.colsurfa.2006.05.044
15 Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art, J. Mater. Sci., 42, 2917 – 2933, (2007). doi: 10.1007/s10853 – 006 – 0637-z
16 Vickers, L., van Riessen, A., Rickard, W.D.A.: Precursors and additives for geopolymer synthesis. In: Fire-Resistant Geopolymers - Role of Fibres and Fillers to Enhance Thermal Properties, Ch.2, Springer, 2015.
17 Kriven, W.M., Bell, J.L., Gordon, M.: Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites, Ceram. Trans., Ch15, 227 – 250, (2003).
18 Kriven, W.M., Bell, J., Gordon, M.: Geopolymer refractories for the glass manufacturing industry, Ceram. Eng. Sci. Proc., 25, [1], Ch. 5, 57 – 79, (2004). doi: 10.1002/9780470294857.ch5
19 Lizcano, M., Kim, H.S., Basu, S., Radovic, M.: Mechanical properties of sodium and potassium activated metakaolin-based geopolymers, J. Mater. Sci., 47, 2607 – 2616, (2012).
20 Rickard, W.D.A., Vickers, L., van Riessen, A.: Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions, Appl. Clay Sci., 73, 71 – 77, (2013).
21 Musil, S.: Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2014.
22 Ribero, D., Kriven, W.M.: Properties of geopolymer composites reinforced with basalt chopped strand mat or woven fabric, J. Am. Ceram. Soc., 1 – 8, (2016). doi: 10.1111/jace.14079
23 Sankar, K., Sá Ribeiro, R.A., Sá Ribeiro, M.G., Kriven, W.M.: Potassium-based geopolymer composites reinforced with chopped bamboo fibers, J. Am. Ceram. Soc., 100, [1], 49 – 55, (2017). doi: 10.1111/jace.14542
24 Sá Ribeiro, R.A., Sá Ribeiro, M.G., Sankar, K., Kriven, W.M.: Bamboo-geopolymer composite: A preliminary study, in developments in strategic ceramic materials II: Ceram. Eng. Sci. Proc., 37, [7], 135 – 143, John Wiley & Sons, Inc., Hoboken, NJ, USA, (2017). doi: 10.1002/9781119321811.ch13
25 Kirschner, A.V., Harmuth, H.: Investigation of geopolymer binders with respect to their application for building materials, Ceramics – Silikáty, 48, [3], 117 – 120, (2004).
26 Pouhet, R.: Formulation and durability of metakaolin-based geopolymers. Dissertation, Université de Toulouse, France, 2015.
27 Krivenko, P.V., Kovalchuk, G.Y.: Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix, J. Mater. Sci., 42, 2944 – 2952, (2007).
28 Kong, D.L.Y., Sanjayan, J.G., Sagoe-Crentsil, K.: Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures, J. Mater. Sci., 43, 824 – 831, (2008).
29 Rowles, M.R., O'Connor, B.H.: Chemical and structural microanalysis of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite, J. Am. Ceram. Soc., 92, [10], 2354 – 2361, (2009).
30 Yunsheng, Z., Wei, S., Zongjin, L.: Composition design and microstructural characterization of calcined kaolin-based geopolymer cement, Appl. Clay Sci., 47, 271 – 275, (2010).
31 Lin, T., Jia, D., He, P., Wang, M., Liang, D.: Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites, Mater. Sci. Eng. A, 497, 181 – 185, (2008).
32 Zhu, H., Zhang, Z., Deng, F., Cao, Y.: The effects of phase changes on the bonding property of geopolymer to hydrated cement, Constr. Build. Mater., 48, 124 – 130, (2013).
33 Zhang, H.Y., Kodur, V., Wu, B., Cao, L., Qi, S.L.: Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash, J. Mater. Civ. Eng., 28, [2], 1 – 12, (2016).
34 Zhao, W., Wang, Y., Wang, X., Wu, D.: Fabrication, mechanical performance and tribological behaviors of polyacetal-fiber-reinforced metakaolin-based geopolymeric composites, Ceram. Int., 42, 6329 – 6341, (2016).
35 Kenne, B.B.D., Elimbi, A., Cyr, M., Dika, J.M., Tchakoute, H.K.: Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, J. Asian Ceram. Soc., 3, 130 – 138, (2015).
36 Rovnaník, P.: Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Constr. Build. Mater., 24, 1176 – 1183, (2010).
37 Villaquirán-Caicedo, M.A., Gutiérrez, R.M.: Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash, DYNA, 82, [194], 104 – 110, (2015).
38 Kabir, S.M.A., Alengaram, U.J., Jumaat, M.Z., Sharmin, A., Islam, A.: Influence of molarity and chemical composition on the development of compressive strength in POFA based geopolymer mortar, Adv. Mater. Sci. Eng., 2015, 1 – 15, (2015).
39 Sá Ribeiro, R.A., Sá Ribeiro, M.G., Sankar, K., Kriven, W.M.: Geopolymer-bamboo composite – A novel sustainable construction material, Constr. Build. Mater., 123, 501 – 507, (2016). doi: 10.1016/j.conbuildmat.2016.07.037
40 Barbosa, V.F.F., MacKenzie, K.J.D., Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers, Int. J. Inorg. Mater., 2, 309 – 317, (2000).
41 Abbasi, S.M., Ahmadi, H., Khalaj, G., Ghasemi, B.: Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes, Ceram. Int., 42, 15171 – 15176, (2016).
42 Bell, J.L., Sarin, P., Provis, J.L., Haggerty, R.P., Driemeyer, P.E., Chupas, P.J., van Deventer, J.S.J., Kriven, W.M.: Atomic structure of a cesium alumino-silicate geopolymer: A pair distribution function study, Chem. Mater., 20, [14], 4768 – 4776, (2008).
43 Bell, J.L., Sarin, P., Driemeyer, P.E., Haggerty, R.P., Chupas, Kriven, W.M.: X-ray pair distribution function analysis of a metakaolin-based KAl·Si2O6·5.5H2O inorganic polymer (geopolymer), J. Mater. Chem., 18, [48], 5974 – 5981, (2008).
44 Latella, B.A., Perera, D.S., Durce, D., Mehrtens, E.G., Davis, J.: Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1, J. Mater. Sci., 43, 2693 – 2699, (2008).
45 Rill, E., Lowry, D.R., Kriven, W.M.: Properties of basalt fiber reinforced geopolymer composites, in strategic materials and computational design, edited by W.M. Kriven, Y. zhou and M. radovic, Cer. Eng. Sci. Proc., 31, [10], 57 – 69, (2010).
46 Musil, S.S., Kutyla, G., Kriven, W.M.: The effect of basalt chopped fiber reinforcement on the mechanical properties of potassium based geopolymer, in developments in strategic materials and computational design III, edited by W.M. Kriven, A.L. gyekenyesi, G. westin and J. wang, Cer. Eng. Sci. Proc., 33, [10], 31 – 42, (2013).
47 Musil, S.S., Keane, P.F., Kriven, W.M.: Green composite: sodium-based geopolymer reinforced with chemically extracted corn husk fibers, in developments in strategic materials and computational design IV, edited by W.M. Kriven, J. wang, Y. zhou and A.L. gyekenyesi, Cer. Eng. Sci. Proc., 34, [10], 123 – 133, (2014).
48 Alzeer, M., MacKenzie, K.J.D.: Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres, J. Mater. Sci., 47, 6958 – 6965, (2012). doi: 10.1007/s10853 – 012 – 6644 – 3
49 Sankar, K., Kriven, W.M.: Sodium geopolymer reinforced with jute weave, in developments in strategic materials and computational design V, edited by W.M. Kriven, D. Zhou, K. Moon, T. Hwang, J. Wang, C. Lewinssohn and Y. Zhou, Cer. Eng. Sci. Proc., 38, [10], 39 – 60, (2015).
50 Heo, U.H., Sankar, K., Kriven, W.M., Musil, S.S.: Rice husk ash as a silica source in geopolymer formulation, in developments in strategic materials and computational design V, edited by W.M. Kriven, D. Zhou, K. Moon, T. Hwang, J. Wang, C. Lewinssohn and Y. Zhou, Cer. Eng. Sci. Proc., 38, [10], 87 – 102, (2015).
51 Sankar, K., Kriven, W.M.: Potassium geopolymer reinforced alkali-treated fique, in developments in strategic materials and computational design V, edited by W.M. Kriven, D. Zhou, K. Moon, T. Hwang, J. Wang, C. Lewinssohn and Y. Zhou, Cer. Eng. Sci. Proc., 38, [10], 61 – 78, (2015).
52 Sankar, K., Kriven, W.M.: Green composite: sodium geopolymer reinforced with malva fibers, J. Am. Ceram. Soc., (in preparation), (2017).
53 Sá Ribeiro, R.A., Sá Ribeiro, M.G., Sankar, K., Kutyla, G.P., Kriven, W.M.: Mixed alkali regional metakaolin-based geopolymer, In: Developments in strategic ceramic materials II: Ceram. Eng. Sci. Proc., 37, [7], 123 – 133, John Wiley & Sons, Inc., Hoboken, NJ, USA, (2017). doi: 10.1002/9781119321811.ch12
54 Zhang, Y., Sun, W., Li, Z., Zhou, X.: Geopolymer extruded composites with incorporated fly ash and polyvinyl alcohol short fiber, ACI Mater. J., 106, [1], 3 – 10, (2009).
55 Rüscher, C. H., Mielcarek, E., Lutz, W., Ritzmann, A., Kriven, W.M.: Weakening of alkali-activated metakaolin during aging investigated by the molybdate method and infrared absorption spectroscopy, J. Am. Ceram. Soc., 93, [9], 2585 – 2590, (2010).
56 Zhang, Z., Yao, X., Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete I. basic properties, Appl. Clay Sci., 49, 1 – 6, (2010).
57 Lloyd, R.R.: Accelerated ageing of geopolymers, in Provis, Van Deventer, editors. Geopolymers: Structure, processing, properties and industrial applications. CRC Press, 139 – 166, (2009).
58 Zhang, Z., Yao, X., Zhu, H., Chen, Y.: Role of water in the synthesis of calcined kaolin-based geopolymer, Appl. Clay Sci., 43, 218 – 223, (2009).
59 Muñiz-Villarreal, M.S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Gasca-Tirado, J.R., Reyes-Araiza, J.L., Rubio-Ávalos, J.C., et al.: The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer, Mater. Lett., 65, [6], 995 – 998, (2011).
60 Rasouli, H.R., Golestani-fard, F., Mirhabibi, A.R., Nasab, G.M., Mackenzie, K.J.D., Shahraki, M.H.: Fabrication and properties of microporous metakaolin-based geopolymer bodies with polylactic acid (PLA) fibers as pore generators, Ceram. Int., 41, 7872 – 7880, (2015).
61 Zhang, Z., Yao, X., Zhu, H., Hua, S.: Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer, J. Cent. South. Univ. T., 16, 49 – 52, (2009).
62 Zhang, Y., Li, S., Xu, D., Wang, B., Xu, G., Yang, D., Wang, N., Liu, H., Wang, Y.: A novel method for preparation of organic resins reinforced geopolymer composites, J. Mater. Sci., 45, 1189 – 1192, (2010).
63 Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., Sivakugan, N.: Use of macro plastic fibers in concrete: A review, Constr. Build. Mater., 93, 180 – 188, (2015).
64 Wang, H., Li, H., Yan, F.: Synthesis and mechanical properties of metakaolinite-based geopolymer, Colloid Surface A, 268, 1 – 6, (2005).
65 He, P., Jia, D., Lin, T., Wang, M., Zhou, Y.: Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fibre reinforced geopolymer composites, Ceram. Int., 36, 1447 – 1453, (2010).
66 Rashad, A.M.: Alkali-activated metakaolin: A short guide for civil engineer – an overview, Constr. Build. Mater., 41, 751 – 765, (2013).
67 Arellano-Aguilar, R., Burciaga-Díaz, O., Gorokhovsky, A., Escalante-García, J.I.: Geopolymer mortars based on a low grade metakaolin: effects of the chemical composition, temperature and aggregate-binder ratio, Constr. Build. Mater., 50, 642 – 648, (2014).
68 Natali, A., Manzi, S., Bignozzi, M.C.: Novel fiber reinforced composite materials based on sustainable geopolymer matrix, Procedia Engineering, 21, 1124 – 31, (2011).
69 Li, Z., Zhang, Y., Zhou, X.: Short fibre reinforced geopolymer composites manufactured by extrusion, J. Mater. Civil Eng., 17, [6], 624 – 31, (2005).
70 Alzeer, M., MacKenzie, K.J.D.: Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibers (phormium tenax), Appl. Clay Sci., 75 – 76, 148 – 152, (2013).
71 Sá Ribeiro, R.A., Kutyla, G.P., Sá Ribeiro, M.G., Kriven, W.M.: Amazonian metakaolin reactivity for geopolymer synthesis, Cement Concrete Comp., unpublished, (2017).
72 Cho, S.: Geopolymer composites and their applications in stress wave mitigation. Dissertation, University of Illinois at Urbana-Champaign, USA, 2015.
Copyright
Göller Verlag GmbH