Articles
All articles | Recent articles
High-Temperature Behaviour of Alkali-Activated Composites based on Fly Ash and Recycled Refractory Particles
L. Carabba1, S. Manzi1, E. Rambaldi2, G. Ridolfi2, M.C. Bignozzi1,2
1 Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, Bologna, Italy
2 Centro Ceramico, via Martelli 26, Bologna, Italy
received June 30, 2017, received in revised form July 17, 2017, accepted August 21, 2017
Vol. 8, No. 3, Pages 377-388 DOI: 10.4416/JCST2017-00047
Abstract
This study aims to develop innovative and sustainable alkali-activated composites with enhanced performance at high temperatures. To reduce production costs and promote a circular economy model, coal fly ashes are selected as a precursor for the alkali activation and recycled refractory particles are used to develop products with high thermal dimensional stability. Matrices and composites are investigated as a function of two curing conditions (heat curing vs room temperature curing) and amounts of dispersed phase (recycled refractory particles) added to the matrix. Thermal stability is assessed based on thermal exposure in a muffle furnace at 800 and 1000 °C, heating microscope analysis, and dilatometry. In addition, mineralogical quantitative analyses are performed to obtain an insight into phase changing after thermal exposure. Results show that the recycled refractory particles do not hinder the alkali activation process, significantly reduce heat-induced cracking, increase the maximum temperature of dimensional stability of the composites up to 1240 °C, and improve the linear dimensional stability during heating. In addition, the heat curing does not significantly increase the temperature range of dimensional stability, whereas the room temperature curing generates a product less prone to cracking when exposed to high temperature, and therefore it can be preferred.
Download Full Article (PDF)
Keywords
Alkali-activated composites, fly ash, refractory, thermal behaviour, heat exposure
References
1 Provis, J.L.: Alkali-activated materials, Cem. Concr. Res., (2017). https://doi.org/10.1016/j.cemconres.2017.02.009
2 Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jiménez, A.: A review on alkaline activation: new analytical perspectives, Mater. Constr., 64, 1 – 24, (2014).
3 Duxson, P., Provis, J.L.: Designing precursors for geopolymer cements, J. Am. Ceram. Soc., 91, 3864 – 3869, (2008).
4 Provis, J.L., van Deventer, J.S.J.: Geopolymers: Structures, processing, properties and industrial applications, Woodhead Publishing, Sawston, Cambridge, 2009.
5 Bernal, S.A., Krivenko, P.V., Provis, J.L., Puertas, F., Rickard, W.D.A., Shi, C., van Riessen, A.: Other potential applications for alkali-activated materials, in Alkali Activated Material, ed. by Provis J.L., van Deventer J.S.J, Springer, Netherlands, 339 – 379, 2014.
6 Natali Murri, A., Rickard, W.D.A., Bignozzi, M.C., van Riessen, A.: High temperature behaviour of ambient cured alkali-activated materials based on ladle slag, Cem. Concr. Res., 43, 51 – 61, (2013).
7 Barbosa V.F.F., MacKenzie, K.J.D.: Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater. Res. Bull., 38, 319 – 331, (2003).
8 Kong, D.L.Y., Sanjayan, J.G., Sagoe-Crentsil, K.: Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures, J. Mater. Sci., 43, 824 – 831, (2008).
9 Duxson, P., Lukey, G.C., van Deventer, J.S.J.: The thermal evolution of metakaolin geopolymers: part 2 – phase stability and structural development, J. Non-Cryst. Solids, 353, 2186 – 2200, (2007).
10 Temuujin, J., van Riessen, A.: Effect of fly ash preliminary calcination on the properties of geopolymer, J. Hazard. Mater., 164, 634 – 639, (2009).
11 Zhang, Z., Provis, J.L., Zou, J., Reid, A., Wang, H.: Toward an indexing approach to evaluate fly ashes for geopolymer manufacture, Cem. Concr. Res., 85, 163 – 173, (2016).
12 Rickard, W.D.A., van Riessen, A., Walls, P.: Thermal character of geopolymers synthesized from class F fly ash containing high concentrations of iron and α-quartz, Int. J. Appl. Ceram. Technol., 7, 81 – 88, (2010).
13 Turner, L.K., Collins, F.G.: Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete, Constr. Build. Mater., 43, 125 – 130, (2013).
14 Jamieson, E., McLellan, B., van Riessen, A., Nikraz, H., Comparison of embodied energies of Ordinary Portland Cement with Bayer-derived geopolymer products, J. Clean. Prod., 99, 112 – 118, (2015).
15 Habert, G., d'Espinose de Lacaillerie, J.B., Roussel, N.: An environmental evaluation of geopolymer based concrete production: reviewing current research trends, J. Clean. Prod., 19, 1229 – 1238, (2011).
16 Kong, D.L.Y., Sanjayan, J.G., Sagoe-Crentsil, K.: Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cem. Concr. Res., 37, 1583 – 1589, (2007).
17 Zhang, H.Y., Kodur, V., Wu, B., Cao, L., Qi, S.L.: Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash, J. Mater. Civ. Eng., 28, 1 – 12, (2016).
18 Bakharev, T.: Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cem. Concr. Res., 36, 1134 – 1147, (2006).
19 Bernal, S.A., Bejarano, J., Garzón, C., Mejía de Gutiérrez, R., Delvasto, S., Rodríguez, E.D.: Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites, Compos. Part B Eng., 43, 1919 – 1928, (2012).
20 Musil S.S., Kriven, W.M.: In situ mechanical properties of chamotte particulate reinforced, potassium geopolymer, J. Am. Ceram. Soc., 97, 907 – 915, (2014).
21 Vickers, L., Rickard, W.D.A., van Riessen, A.: Strategies to control the high temperature shrinkage of fly ash based geopolymers, Thermochim. Acta, 580, 20 – 27, (2014).
22 Kamseu, E., Rizzuti, A., Leonelli, C., Perera, D.: Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition, J. Mater. Sci., 45, 1715 – 1724, (2010).
23 Masi, G., Rickard, W.D.A., Bignozzi, M.C., van Riessen, A.: The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers, Compos. Part B Eng., 76, 218 – 228, (2015).
24 Ribero, D., Kriven, W.M.: Properties of geopolymer composites reinforced with basalt chopped strand mat or woven fabric, J. Am. Ceram. Soc., 99, 1192 – 1199, (2016).
25 Natali, M.E., White, C.E., Bignozzi, M.C.: Elucidating the atomic structures of different sources of fly ash using X-ray and neutron PDF analysis, Fuel, 177, 148 – 156, (2016).
26 Bignozzi, M.C., Manzi, S., Natali, M.E., Rickard, W.D.A., van Riessen, A.: Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio, Constr. Build. Mater., 69, 262 – 270, (2014).
27 Larson, A.C., Von Dreele, R.B.: GSAS—General Structural Analysis System. Los Alamos National Laboratory Report, LAUR, 86 – 748, 1994.
28 Kuenzel, C., Grover, L.M., Vandeperre, L., Boccaccini, A.R., Cheeseman, C.R.: Production of nepheline/quartz ceramics from geopolymer mortars, J. Eur. Ceram. Soc., 33, 251 – 258, (2013).
29 Rickard, W.D.A., Kealley, C.S., van Riessen, A.: Thermally induced microstructural changes in fly ash geopolymers: experimental results and proposed model, J. Am. Ceram. Soc., 98, 929 – 939, (2015).
30 Part, W.K., Ramli, M., Cheah, C.B.: An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products, Constr. Build. Mater., 77, 370 – 395, (2015).
31 Sabbatini, A., Vidal, L., Pettinari, C., Sobrados, I., Rossignol, S.: Control of shaping and thermal resistance of metakaolin-based geopolymers, Mater. Des., 116, 374 – 385, (2017).
32 White, C.E., Provis, J.L., Proffen, T., Van Deventer, J.S.J.: The effects of temperature on the local structure of metakaolin-based geopolymer binder: A neutron pair distribution function investigation, J. Am. Ceram. Soc., 93, 3486 – 3492, (2010).
33 Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C, J. Mater. Sci., 42, 3044 – 3054, (2007).
34 Rickard, W.D.A., Temuujin, J., van Riessen, A.: Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition, J. Non-Cryst. Solids, 358, 1830 – 1839, (2012).
35 Fernández-Jiménez, A., Pastor, J.Y., Martín, A., Palomo, A.: High-temperature resistance in alkali-activated cement, J. Am. Ceram. Soc., 93, 3411 – 3417, (2010).
36 Gluth, G.J.G., Rickard, W.D.A., Werner, S., Pirskawetz, S.: Acoustic emission and microstructural changes in fly ash geopolymer concretes exposed to simulated fire, Mater. Struct., 49, 5243 – 5254, (2016).
37 Rickard, W.D.A., Kealley, C.S., van Riessen, A.: Thermally induced microstructural changes in fly ash geopolymers: experimental results and proposed model, J. Am. Ceram. Soc., 98, 929 – 939, (2015).
38 Mohd Salahuddin, M.B., Norkhairunnisa, M., Mustapha, F.: A review on thermophysical evaluation of alkali-activated geopolymers, Ceram. Int., 41, 4273 – 4281, (2015).
39 Provis, J.L., Yong, C.Z., Duxson, P., van Deventer, J.S.J.: Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers, Colloid Surface A, 336, 57 – 63, (2009).
40 Rahier, H., Simons, W., Mele, B.V., Biesemans, M.: Low-temperature synthesized aluminosilicate glasses: Part III influence of the composition of the silicate solution on production, structure and properties, J. Mater. Sci., 32, 2237 – 2247, (1997).
Copyright
Göller Verlag GmbH