Articles
All articles | Recent articles
Control of Polycondensation Reaction Generated from Different Metakaolins and Alkaline Solutions
A. Gharzouni1,2, I. Sobrados3, E. Joussein4, S. Baklouti2, S. Rossignol1
1 Science des Procédés Céramiques et de Traitements de Surface (SPCTS), Ecole Nationale Supérieure de Céramique Industrielle, 12 rue Atlantis, 87068 Limoges Cedex, France
2 Laboratoire de Chimie Industrielle, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
3 Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
4 Université de Limoges, GRESE EA 4330, 123 avenue Albert Thomas, 87060 Limoges, France
received June 2, 2017, received in revised form August 22, 2017, accepted August 30, 2017
Vol. 8, No. 3, Pages 365-376 DOI: 10.4416/JCST2017-00040
Abstract
The purpose of the present study is to control the polycondensation reaction of various geopolymer samples based on six metakaolins and two potassium alkaline solutions with different reactivities. First, metakaolin characterization revealed three levels of reactivity, which increase essentially with the increase in the degree of purity, amorphous phase and water demand value. The formation of geopolymer samples was then investigated. In situ thermal analysis showed that depending on the metakaolin surface reactivity, the availability of dissolved species decreases the energy required for oligomer formation to approximately 1.8 kJ/mol. However, a highly reactive alkaline solution favors the dissolution and decreases this energy to approximately 0.6 kJ/mol, even in the case of low-reactive metakaolins. In addition, in situ FTIR spectroscopy revealed that the metakaolin impurities are responsible for the generation of several networks. However, the geopolymer network is favored in the case of a highly reactive alkaline solution. Further, structural information was obtained with in situ 27Al NMR. It was proven that the reactivity of metakaolin and, more significantly, the reactivity of alkaline solutions ensure higher conversion rates of Al(VI) and Al(V) species to Al(IV), which may reach 80 %. Better compressive strengths (> 60 MPa) were obtained for high conversion rates.
Download Full Article (PDF)
Keywords
Metakaolin, alkaline solution, kinetics, oligomer formation, 27Al NMR
References
1 Wang, H., Li, H., Yan, F.: Synthesis and mechanical properties of metakaolinite-based geopolymer, Colloid. Surface, 268, 1 – 6, (2005).
2 Granizo, M.L., Varela, M.T.B., Martinez-Ramirez, S.: Alkali activation of Metakaolins: Parameters affecting mechanical, structural and microstructural properties, Mater. Sci., 42, 2934 – 2943, (2007).
3 Provis, J.L., van Deventer, J.S.J.: Geopolymerisation kinetics. 2. reaction kinetic modelling, Chem. Eng. Sci., 62, 2309 – 2317, (2007).
4 Rahier, H., Wastiels, J., Biesemans, M., Willlem, R., Van Assche, G., VanMele, B.: Reaction mechanism, kinetics and high temperature transformations of geopolymers, Mater. Sci., 42, 2982 – 2996, (2007).
5 Favier, A., Habert, G., Roussel, N., d'Espinose de Lacaillerie, J.: A multinuclear static NMR study of geopolymerisation, Cement Concrete Res., 75, 104 – 109, (2015).
6 Xia, M., Shi, H., Guo, X.: Probing the structural evolution during the geopolymerization process at an early age using proton NMR spin-lattice relaxation, Mater. Lett., 136, 222 – 224, (2014).
7 Autef, A., Joussein, E., Gasgnier, G., Rossignol, S.: Role of the silica source on the geopolymerization rate: A thermal analysis study, J. Non-Cryst. Solids, 366, 13 – 21, (2013).
8 Provis, J.L., Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Statistical Thermodynamic Model for Si/Al Ordering in Amorphous Aluminosilicates, Chem. Mater., 17, 2976 – 2986, (2005).
9 Autef, A., Joussein, E., Poulesquen, A., Gasgnier, G., Pronier, S., Sobrados, I. Rossignol, S.: Role of metakaolin dehydroxylation in geopolymer synthesis, Powder Technol., 250, 33 – 39, (2013).
10 Prud'homme, E., Michaud, P., Joussein, E., Clacens, J.M., Rossignol, S.: Role of alkaline cations and water content on geomaterial foams: Monitoring during formation, J. Non-Cryst. Solids, 357, 1270 – 1278, (2011).
11 Iuga, D., Morai, C., Gan, Z., Neuville, D.R., Cormier, L., Massiot, D.: NMR heteronuclear correlation between quadrupolar nuclei in solids, J. Am. Chem. Soc., 127, 11540 – 11541, (2005).
12 Man, P.P., Klinowski, J.: Quantitative determination of aluminium in zeolites by solid-state 27AI N.M.R.Spectroscopy, J. Chem. Soc. Chem. Comm., 19, 1291 – 1294, (1988).
13 Favier, A.: Setting mechanism and rheology of model geopolymer binders, in French, PhD thesis, University of Paris-Est, 2013.
14 San Nicolas, R., Cyr, M., Escadeillas, G.: Characteristics and applications of flash metakaolins, Appl. Clay Sci., 83 – 84, 253 – 262, (2013).
15 Cyr, M., Trinh, M., Husson, B., Casaux-Ginestet, G.: Effect of cement type on metakaolin efficiency, Cem. Concr. Res., 64, 63 – 72, (2014).
16 Fabbri, B., Gualtieri, S., Leonardi, C.: Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin, Appl. Clay Sci., 73, 2 – 10, (2013).
17 Medri, V., Fabbri, S., Dedecek, J., Sobalik, Z., Tvaruzkova, Z., Vaccari A.: Role of the morphology and the dehydroxylation of metakaolins on geopolymerization, Appl. Clay Sci., 50, 538 – 545, (2010).
18 Weng, L., Sagoe-Crentsil, K., Brown, T., Song, S.: Effects of aluminates on the formation of geopolymers, Mater. Sci. Eng. B., 117, 163 – 168, (2005).
19 Konan, K.L., Soro, J., Andji, J.Y.Y., Oyetola, S., Kra, G.: Comparative study of dehydroxylation/amorphisation in two kaolins with different crystallinity, in french, J. Soc. Ouest-Afr. Chim., 30, 29 – 39, (2010).
20 Guyot, J.: Measuring the specific surface of clay based on adsorption, in french, Ann. Argon, 20, 33 – 359, (1969).
21 Brown, I.W.M., Mackenzie, K.J.D., Bowden, M.E., Meinhold, R.H.: Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al Solid-state nuclear magnetic Resonance: 11, high-temperature transformations of metakaolinite, J. Am. Ceram. Soc., 68, 298 – 301, (1985).
22 Duxson, P., Lukey, G.C., Separovic F., van Deventer, J.S.J.: Effect of alkali cations on aluminum incorporation in geopolymeric gels, Ind. Eng. Chem. Res., 44, 832 – 839, (2005).
23 Rowles, M.R., Hanna, J.V., Pike, K.J., Smith, M.E., Connor, B.H.O.: 29Si,27Al, 1H and 23Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers, Appl. Magn. Reson., 32, 663 – 689, (2007).
24 Sanz, J., Madani, J., Serratos, M., Moya, J.S., Aza, S.: Aluminum-27 and Silicon-29 magic- angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation, J. Am. Ceram. Soc., 71, 418 – 421, (1988).
25 He, H., Guo, J., Zhu, J., Yuan, P., Hu C.: 29Si and 27Al MAS NMR spectra of mullites from different kaolinites, Spectrochim. Acta A-M., 60, 1061 – 1064, (2004).
26 Fernandez-Jimenez, A., de la Torre, A.G., Palomo, A., Lopez-Olmo, G., Alonso, M.M., Aranda, M.A.G.: Quantitative determination of phases in the alkaline activation of fly ash. part II: Degree of reaction, Fuel, 85, 1960 – 1969, (2006).
27 Gharzouni, A., Joussein, E., Samet, B., Baklouti, S., Rossignol, S.: Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation, J. Non-Cryst. Solids., 410, 127 – 134, (2015).
28 Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation, Langmuir, 17, 9076 – 9082, (2007).
29 Gouny, F., Fouchal, F., Maillard, P., Rossignol, S.: Study of the effect of siliceous species in the formation of a geopolymer Binder: Understanding the reaction mechanisms among the binder, wood, and earth brick, Ind. Eng. Chem. Res., 53, 3559 – 3565, (2014).
30 Gharzouni, A., Joussein, E., Samet, B., Baklouti, S., Rossignol, S.: Addition of low reactive clay into metakaolin-based geopolymer formulation: Synthesis, existence domains and properties, Powder Technol., 288, 212 – 220, (2016).
31 Davidovits, J.: Structural characterization of geopolymeric materials with x-ray diffractometry and MAS-NMR spectrometry. Geopolymer '88 – First European Conference on Soft Mineralurgy, Compeigne, France, Universite de Technologie de Compeigne, 1988.
32 Fletcher, R.A., MacKenzie, K.J.D., Nicholson, C.L., Shimada, S.: The composition range of aluminosilicate geopolymers, J. Eur. Ceram. Soc., 25, 1471 – 1477, (2005).
33 Walther, J.V.: Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge, Am. J. Sci., 7, 296 – 693, (1996).
34 Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloid. Surface A., 269, 47 – 58, (2005).
35 Atmaja, L., Fansuri, H., Maharani, A.: Crystalline phase reactivity in the synthesis of fly ash-based geopolymer, Indo. J. Chem., 11, 90 – 95, (2011).
Copyright
Göller Verlag GmbH