Articles
All articles | Recent articles
Geopolymers: Ceramic-Like Inorganic Polymers
J. Davidovits
Geopolymer Institute, 16 rue Galilée, 02100 Saint-Quentin, France
received June 2, 2017, received in revised form August 12, 2017, accepted August 30, 2017
Vol. 8, No. 3, Pages 335-350 DOI: 10.4416/JCST2017-00038
Abstract
Geopolymers are ceramic-like inorganic polymers produced at low temperature, generally below 100 °C. They consist of chains or networks of mineral molecules linked with covalent bonds. The raw materials are mainly minerals of geological origin, hence the name "geopolymer". They comprise several molecular units for example: silico-oxide (Na,K)-(-Si-O-Si-O-) for (Na,K)-poly(silicate) or (Na,K)-poly(siloxonate), silico-aluminate (Na,K)-(-Si-O-Al-O) for (Na,K)-poly(sialate), ferro-silico-aluminate (Na,K)- (-Fe-O-Si-O-Al-O-) or (Na,K)-poly(ferro-sialate), alumino-phosphate (-Al-O-P-O-) for poly(alumino-phosphate), formed in a geopolymerization process. We focus here on the reactivity of calcined kaolinite, an aluminosilicate oxide Si2O5Al2O2, metakaolin, which led to the discovery of geopolymers 40 years ago. A distinction is made between two synthesis routes: alkaline medium (Na+, K+, Li+, Ca++, Cs+ and the like) and acidic milieu (phosphoric acid, organic carboxylic acids). The alkaline route is the most important, so far. NMR spectroscopy provides data on the molecular structure and polymeric character. The geopolymerization mechanism starts with polycondensation of oligomers into small ribbon-like molecules. This intermediary stage involves several Si-OH groups together with H2O molecules. It is referred to as NASH or KASH by some cement scientists and generalized to the final geopolymer structure. The poly(sialate) final structure consists of well-polymerized individual elementary nanoparticles of 5 to 40 nm in size.
Download Full Article (PDF)
Keywords
Geopolymer, polymerization mechanism, applications, properties, molecular structure.
References
1 Olsen, N.: Process for hardening clay at low temperature, in German, German Patent 600, 327, (1934).
2 Berg, L.C., Demidenko, B.A., Reminikova, V.I., Nisamov, N.S.: Non-fired materials based on kaolin, for outside cladding of buildings, in french, Stroitel'nye Materialy (USSR), 10, 22, (1970).
3 Flint, E.P., Clarke, W.F., Newman, E.S., Shartsis, L., Bishop, D.L., Wells, L.S.: J. Res. Nat. Bur. Stand., 36, 63, (1946).
4 Borchert, W., Keidel, J.: Heidelb. Beitr. z. Min. u. Petr., 1. 2, (1949).
5 Howell P.A.: US Patent 3, 114, 603, (1963).
6 Besson, H., Caillère, S., Henin, S.: Conditions for preparation of hydrosodalite at low temperature, in french, C. Rend. Acad. Sci., D269, 1367, (1969).
7 Davidovits, J.: Procédé de fabrication de panneaux agglomérés et panneaux résultant de l'application de ce procédé, French Patent Application FR 72.38746 (FR 2,204,999), (1972), and FR 73.35979 (FR 2,246,382), (1973); US Patent 3,950,470, Process for the fabrication of sintered panels and panels resulting from the application of this process, (1974).
8 Davidovits, J.: Solid phase synthesis of a mineral block polymer by low temperature polycondensation of aluminosilicate polymers, IUPAC International Symposium on Macromolecules Stockholm; Sept. 1976; Topic III, New Polymers of high stability, ((1976). The PDF file may be downloaded at
9 Purdon, A.O.: The action of alkalis on blast furnace slag, in french, Journal de la Société des Industries Chimiques, Brussels, Belgium, 59, 191 – 202, (1940).
10 Gluchovskij, V.D.: Gruntosilikaty, Gosstrojizdat Kiev 1959.
11 Gluchovskij, V.D.: Patent USSR 245 627 (1967), Patent USSR 449894 (Patent appl. 1958, granted 1974).
12 Davidovits, J.: The Need to Create a New Technical Language for the Transfer of Basic Scientific Information, in Transfer and Exploitation of Scientific and Technical Information, Proceedings of the symposium, Luxemburg, 10 – 12 June 1981, pp. 316 – 320. It is available as a pdf-file and may be downloaded from the European Parliament Bookshop. Go to
13 Davidovits, J.: Geopolymers: inorganic polymeric new materials, J. Thermal Analysis, 37, 1633 – 1656, (1991). PDF file at
14 Wagh, A.S.: Chemically bonded phosphate ceramics — A novel class of geopolymers. In: Proceedings of the 106th Ann. Mtg. of the American Ceramic Society, Indianapolis, (2004).
15 Perera, D.S., Hanna, J.V., Davis, J., Blackford, M.G., Latella, B.A., Sasaki, Y., Vance E.R.: Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials, J. Mater. Sci., 43, 6562 – 6566, (2008).
16 Cao, D., Su, D., Lu, B., Yang Y.: Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid, J. Chin. Chem. Soc. , 33, 1385 – 89, (2005).
17 Gibbs, G.V., Hill, F.C., Boisen Jr, M.B., Downs, R.T.: Molecules as a Basis for Modeling the Force Field of Silica. In: Chapter 6 in Structure and Imperfections in Amorphous and Crystalline Silicon Dioxide, Edited by R. A. B. Devine, J.-P. Duraud and E. Dooryhee, John Wiley & Sons Ltd, (2000).
18 Davidovits, J.: Geopolymer chemistry and properties. In: Geopolymer '88 Proceedings, 25 – 48, (1988).
19 North, M.R., Swaddle, T.W.: Kinetics of silicate exchange in alkaline aluminosilicate solutions, Inorg. Chem., 39, 2661 – 2665, (2000).
20 Kriven, W.M., Bell, J., Gordon, M.: Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites, Ceram. Trans., 153, 227 – 250, (2003).
21 Sindhunata, van Deventer, J.S.J., Lukey, G.C., Xu, H.: Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization, Ind. Eng. Chem. Res., 45, [10], 3559 – 3568, (2006).
22 Davidovits, J.: Properties of geopolymer cements. In: proceedings of 1st Int. Nat. conference on alkaline cements and concretes. SRIBM, kiev (Ukraine), Vol. 1, 131 – 149, (1994). see also in: Geopolymers: Man-made rock geosynthesis and the resulting development of very early high strength cement, J. Materials Education, 16, [2 & 3], 91 – 139, (1994).
23 Barbosa, V.F.F, MacKenzie, K.J.D., Thaumaturgo, C.: Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int. J. Inorg. Mater., 2, 309 – 317, (2000).
24 Rowles, M.R.: The structural nature of aluminosilicate inorganic polymers: A macro to nanoscale study. PhD Thesis, Curtin University of Technology, Perth, Australia, (2004).
25 Davidovits, J., Buzzi, L., Rocher, P., Gimeno, D., Marini, C., Tocco, S.: Geopolymeric cement based on low cost geological materials. Results from the european research project Geocistem. In: Geopolymer '99 Proceedings, 83 – 96. (Project funded by the European Commission, Brite-Euram BE-7355 – 93, Jan. 1, 1994 to Feb. 28, 1997), (1999).
26 Davidovits, J.: Laboratory and Consulting Report, Cordi-Géopolymère for Geocys, May 30, 2000, unpublished. See in J. Davidovits, Geopolymer Chemistry and Applications, Chapter 12.
27 Davidovits, J.: Geopolymer Chemistry and Applications, 2nd, 3rd and 4th edition, Geopolymer Institute, Saint-Quentin, France, (2008, 2011, 2015).
28 Davidovits, J.: Polymère Minéral, French Patent Application FR 79.22041 (FR 2,464,227), (1979), and FR 80.18970 (FR 2,489,290), (1980); US Patent 4,349,386, Mineral polymer.
29 Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., Grimmer, A.-R.: Structural studies of silicates by solid-state high-resolution 29Si NMR, J. Am. Chem. Soc., 102, 4889 – 4893, (1980).
30 Müller, D., Gressner, W., Behrens, H.J., Scheler, G.: Determination of the aluminum coordination in Aluminum-oxygen compounds by solid-state high resolution 27Al NMR, Chem. Phys. Lett., 79, [1], 59 – 62, (1981).
31 Meinhold, R.H., MacKenzie, K.J.D., Brown, I.W.M.: Thermal reactions of kaolinite studied by solid state 27-Al and 29-Si NMR, J. Mater. Sci. Lett., 4, 163 – 166, (1985).
32 Mackenzie, K.J.D., Brown, I.W.M, Meinhold, R.H., Bowden, M.E.: Outstanding problems in the kaolinite-mullite Reaction; sequence investigated by 29Si and 27Al solid-state nuclear magnetic Resonance: I, metakaolinite, J. Am. Ceram. Soc., 68, [6], 293 – 297, (1985).
33 Sanz, J., Madani, A., Serratosa, J.M., Moya, J.S., Aza, S.: Aluminum-27 and Silicon-29 magic-angle spinning nuclear magnetic resonance study of kaolinite-mullite transformation, J. Am. Ceram. Soc., 71, [10], C-418 – C-421, (1988).
34 Kipping, F.S.: XVII. Organic derivatives of silicon. Part XXXII. The carbon-silicon binding, J. Chem. Soc., 130, 104 – 107, (1927).
35 Mac Gregor, R.R.: Silicones and their Uses, in French, Eyrolles editions, Paris, (1955).
36 Noll, W.: Chemistry and Technology of Silicone, Academic Press, N.Y., (1968), in particular, Chapter 6.3 (pp. 287 – 317) on the "Siloxane Bonds in Molecules of Siloxanes and Anions of Silicates."), (First published in the German language under the title "Chemie und Technologie der Silicone", Verlag Chemie, Weinheim/Bergstr., Germany, 1960).
37 Davidovits, J.: Geopolymer Chemistry and Applications, Chapter 8. See Ref. 27.
38 Zoulgami, M., Lucas-Girot, A., Michaud, V., Briard, P., Gaudé, J., Oudadesse, H.: Synthesis and physico-chemical characterization of a polysialate-hydroxyapatite composite for potential biomedical application, Eur. Phys. J. AP, 19, 173 – 179, (2002).
39 Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.V.: Structural ordering in geopolymers derived from metakaolin, Geopolymer 2005 Proceedings, 21 – 25, Geopolymer Institute, Saint-Quentin, France, (2005).
40 Zhang, B., MacKenzie, K.J.D, Brown, I.W.M.: Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate, J. Mater. Sci., 44, 4668 – 4676, (2009).
41 Rowles, M.R., O'Connor, B.H.: Chemical and structural microanalysis of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite, J. Am. Ceram. Soc., 92, [10], 2354 – 2361, (2009).
42 Davidovits, J.: Geopolymers based on natural and synthetic metakaolin, a critical review. Online at
43 Davidovits, J.: Geopolymers based on natural and synthetic metakaolin: A critical review of published scientific papers. In: 41st Int'l Conf & Expo on Advanced Ceramics & Composites (ICACC 2017), Daytona Beach, Florida, USA. (in Press).
44 Favier, A., Habert, G., d'Espinose de Lacaillerie, J.B., Roussel, N.: Mechanical properties and compositional heterogeneities of fresh geopolymer pastes, Cement Concrete Res., 48, 9 – 16, (2013).
45 Favier, A, Habert, G., Roussel, N., d'Espinose de Lacaillerie, J.B.: A multinuclear static NMR study of geopolymerization, Cement Concrete Res., 75, 104 – 109, (2015).
46 Kriven, W.M., Bell, J., Gordon, M.: Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites, Ceram. Trans., 153, 227 – 250, (2003).
47 Kriven, W.M., Bell, J., Gordon, M.: Microstructure and nanoporosity of as-set geopolymers, Ceram. Eng. Sci. Proc., 27, [2], 491 – 503, (2006).
48 Kriven, W.M., Bell, J., Gordon, M., Wen, G.: Geopolymers, more than just a cement. In: Geopolymer 2005 Proceedings, 179 – 183, (2005).
49 Jia, D.: See the video of the keynote paper: High-temperature geopolymer carbon fiber reinforced composites and their derived CMC, Geopolymer Camp 2011 at
50 He, P., Jia, D., Wang, M., Zhou, Y.: Effect of cesium substitution on the thermal evolution and ceramics formation of potassium-based geopolymer, Ceram. Int., 36, 2395 – 2400, (2010).
51 He, P., Jia, D., Wang, M., Zhou, Y.: Thermal evolution and crystallization kinetics of potassium-based geopolymer, Ceram. Int., 37, 59 – 63, (2011).
52 Talling, B., Brandstetr, J.: Present state and future of alkali-activated slag concrete. In: 3rd International Conference on the Use of Fly Ash, Silica Fume, Slag & Natural Pozzolans in Concrete, ACI SP-114, Trondheim, Norway, 2, 1519 – 1545, (1989).
53 Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-activated cements and concretes, Taylor & Francis ed., London, (2006).
54 Davidovits, J., Sawyer, J.L.: Early high-strength mineral polymer, American patent application filed in 1984; patent US 4,509,985 granted on April 9, 1985.
55 Davidovits, J.: Why alkali-activated-materials are not Geopolymers, videos, Part 1, 2 and 3 at
56 Davidovits, J.: Geopolymer cement review 2013, Geopolymer Institute Technical Paper # 21 at
57 Bell, J.L., Sarin, P., Provis, J.L., Haggerty, R.P., Driemeyer, P.E., Chupas, P.J., van Deventer, J.S.J., Kriven, W.M.: Atomic structure of a cesium aluminosilicate Geopolymer: A pair distribution function study, Chem. Mater., 20, [14], 4768 – 4776, (2008).
58 Bell, J.L., Sarin, P., Driemeyer, P.E., Haggerty, R.P., Chupas, P.J., Kriven, W.M.: X-ray pair distribution function analysis of potassium based geopolymer, J. Mater. Chem., 18, [48], 5974 – 5981, (2008).
59 Bell, J.L., Driemeyer, P.E., Kriven, W.M.: Formation of ceramics from metakaolin-based geopolymers: part I. Cs-based geopolymer, J. Am. Ceram. Soc., 92, [1], 1551 – 2916, (2009).
60 Bell J.L., Driemeyer, P.E., Kriven, W.M.: Formation of ceramics from metakaolin-based geopolymers: Part II. K-based geopolymer, J. Am. Ceram. Soc., 92, [3], 607 – 615, (2009).
61 Xie, N., Bell, J.L., Kriven, W.M.: Fabrication of structural, leucite glass-ceramics from potassium-based geopolymer precursors, J. Am. Ceram. Soc., 93, [9], 2644 – 2649, (2010).
62 Bagci, C., Kutyla, G.P., Kriven, W.M.: In Situ carbothermal reduction/nitridation of geopolymer composites containing carbon nanoparticles, Ceram. Eng. Sci. Proc., 35, [10], 15 – 28, (2014).
63 Bagci C., Kutyla G.P., Seymour K.C., Kriven, W.M.: Synthesis and characterization of silicon carbide powders converted from metakaolin-based geopolymers, J. Am. Ceram. Soc., 99, [7], 2521 – 2530, (2016).
64 Bagci, C., Yang, Q., Kriven, W.M.: Formation of Si3N4 particles with various ratios made by carbothermal reduction and nitridation, J. Am. Ceram. Soc., submitted (2017).
Copyright
Göller Verlag GmbH