Articles
All articles | Recent articles
Intumescent Geopolymer-Bound Coatings for Fire Protection of Steel
M.-B. Watolla1, G.J.G. Gluth1, P. Sturm1, W.D.A. Rickard2, S. Krüger1, B. Schartel1
1 Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
2 Curtin University, John de Laeter Centre and Department of Physics & Astronomy, GPO Box U1987, Perth WA 6845, Australia
received May 19, 2017, received in revised form August 10, 2017, accepted August 24, 2017
Vol. 8, No. 3, Pages 351-364 DOI: 10.4416/JCST2017-00035
Abstract
The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic. Thermogravimetry and oscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate. A coating of just 6 mm was able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes.
Download Full Article (PDF)
Keywords
Geopolymers, aluminosilicate inorganic polymers, intumescence, coatings, fire resistance, fire protection
References
1 Vandersall, H.: Intumescent coating systems, their development and chemistry, J. Fire Flammability, 2, 97 – 140, (1971).
2 Bartholmai, M., Schriever, R., Schartel, B.: Influence of external heat flux and coating thickness on thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis, Fire Mater., 27, 151 – 162, (2003).
3 Duquesne, S., Magnet, S., Jama, C., Delobel, R.: Intumescent paints: Fire protective coatings for metallic substrates. Surf. Coat. Technol., 180, 302 – 307, (2004).
4 Jimenez, M., Duquesne, S., Bourbigot, S.: Intumescent fire protective coating: Toward a better understanding of their mechanism of action, Thermochim. Acta, 449, 16 – 26, (2006).
5 Gu, J.W., Zhang, G.C., Dong, S.L., Zhang, Q.Y., Kong, J.: Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings, Surf. Coat. Technol., 201, 7835 – 7841, (2007).
6 Bartholmai, M., Schartel, B.: Assessing the performance of intumescent coatings using bench-scaled cone calorimeter and finite difference simulations, Fire Mater., 31, 187 – 205, (2007).
7 Duquesne, S., Bachelet, P., Bellayer, S., Bourbigot, S., Mertens, W.: Influence of inorganic fillers on the fire protection of intumescent coatings. J. Fire Sci., 31, 258 – 275, (2013).
8 Weil, E.D.: Fire-protective and flame-retardant coatings – a state-of-the-art review, J. Fire Sci., 29, 259 – 296, (2011).
9 Alongi, J., Han, Z., Bourbigot, S.: Intumescence: tradition versus novelty. A comprehensive review, Prog. Polym. Sci., 51, 28 – 73, (2015).
10 Mariappan, T.: Recent developments of intumescent fire protection coatings for structural steel: A review, J. Fire Sci., 34, 120 – 163, (2016).
11 Gardelle, B., Duquesne, S., Vandereecken, P., Bellayer, S., Bourbigot, S.: Resistance to fire of intumescent silicone based coating: The role of organoclay, Prog. Org. Coat., 76, 1633 – 1641, (2013).
12 Gardelle, B., Duquesne, S., Vandereecken, P., Bourbigot, S.: Characterization of the carbonization process of expandable graphite/silicone formulations in a simulated fire, Polym. Degrad. Stab., 98, 1052 – 1063, (2013).
13 Gardelle, B., Duquesne, S., Vandereecken, P., Bourbigot, S.: Resistance to fire of silicone-based coatings: fire protection of steel against cellulosic fire, J. Fire Sci., 32, 374 – 387, (2014).
14 Kruse, D., Simon, S., Menke, K., Friebel, S., Gettwert, V.: Composition for a fire-protection agent for materials and fire-protection method. European Patent EP 1 678 268, (2004).
15 Hörold, A., Schartel, B., Trappe, V., Gettwert, V., Korzen M.: Protecting the structural integrity of composites in fire: intumescent coatings in the intermediate scale, J. Reinf. Plast. Compos., 34, 2029 – 2044, (2015).
16 Krüger, S., Gluth, G.J.G., Watolla, M.-B., Morys, M., Hässler, D., Schartel, B.: New ways: reactive fire protection coatings for extreme conditions, (in German), Bautechnik, 93, 531 – 542, (2016).
17 Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: The current state of the art, J. Mater. Sci., 42, 2917 – 2933, (2007).
18 Provis, J.L., Bernal, S.A.: Geopolymers and related alkali-activated materials, Annu. Rev. Mater. Res., 44, 299 – 327, (2014).
19 Barbosa, V.F.F., MacKenzie, K.J.D.: Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater. Res. Bull., 38, 319 – 331, (2003).
20 Comrie, D.C., Kriven, W.M.: Composite cold ceramic geopolymer in a refractory application, Ceram. Trans., 153, 211 – 225, (2003).
21 Fernández-Jiménez, A., Palomo, A., Pastor, J.Y., Martín, A.: New cementitious materials based on alkali-activated fly ash: performance at high temperatures, J. Am. Ceram. Soc., 91, 3308 – 3314, (2008).
22 Bell, J.L., Driemeyer, P.E., Kriven, W.M.: Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer, J. Am. Ceram. Soc., 92, 607 – 615, (2009).
23 Rickard, W.D.A., Temuujin, J., van Riessen, A.: Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition, J. Non-Cryst. Solids, 358, 1830 – 1839, (2012).
24 Rickard, W.D.A., Kealley, C.S., van Riessen, A.: Thermally induced microstructural changes in fly ash geopolymers: Experimental results and proposed model, J. Am. Ceram. Soc., 98, 929 – 939, (2015).
25 Sturm, P., Gluth, G.J.G., Simon, S., Brouwers, H.J.H., Kühne, H.-C.: The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites, Thermochim. Acta, 635, 41 – 58, (2016).
26 Bell, J., Gordon, M., Kriven, W.: Use of geopolymeric cements as a refractory adhesive for metal and ceramic joins, Ceram. Eng. Sci. Proc., 26, [3], 407 – 413, (2005).
27 Zhao, R., Sanjayan, J.G.: Geopolymer and portland cement concretes in simulated fire, Mag. Concr. Res., 63, 163 – 173, (2011).
28 Rickard, W.D.A., Gluth, G.J.G., Pistol, K.: In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates, Cem. Concr. Res., 80, 33 – 43, (2016).
29 Gluth, G.J.G., Rickard, W.D.A., Werner, S., Pirskawetz, S.: Acoustic emission and microstructural changes in fly ash geopolymer concretes exposed to simulated fire, Mater. Struct., 49, 5243 – 5254, (2016).
30 Herr, R.: Geopolymers – a new mineral construction materials generation for the fire protection of civil engineering structures, (in German), IEMB Info 2004/7. Institut für Erhaltung und Modernisierung von Bauwerken, Berlin, 2004.
31 Krivenko, P.V., Pushkavera, Y.K., Sukhanevich, M.V., Guziy, S.G.: Fireproof coatings on the basis of alkaline aluminum silicate systems, Ceram. Eng. Sci. Proc., 29, [10], 129 – 142, (2009).
32 Temuujin, J., Minjigmaa, A., Rickard, W., Lee, M., Williams, I., van Riessen, A.: Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation, J. Hazard. Mater., 180, 748 – 752, (2010).
33 Rickard, W.D.A., Vickers, L., van Riessen, A.: Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions, Appl. Clay Sci., 73, 71 – 77, (2013).
34 Rickard, W.D.A., van Riessen, A.: Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire, Cem. Concr. Compos., 48, 75 – 82, (2014).
35 Sakkas, K., Nomikos, P., Sofianos, A., Panias, D.: Sodium-based fire resistant geopolymer for passive fire protection, Fire Mater., 39, 259 – 270, (2015).
36 Lyon, R.E., Balaguru, P.N., Foden, A., Sorathia, U., Davidovits, J., Davidovics, M.: Fire-resistant aluminosilicate composites, Fire Mater., 21, 67 – 73, (1997).
37 Prud'homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Arrii-Clacens, S., Clacens, J.M., Rossignol, S.: Silica fume as porogent agent in geo-materials at low temperature, J. Eur. Ceram. Soc., 30, 1641 – 1648, (2010).
38 Masi, G., Rickard, W.D.A., Vickers, L., Bignozzi, M.C., van Riessen, A.: A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 40, 13891 – 13902, (2014).
39 Hlaváček, P., Šmilauer, V., Škvara, F., Kopecký, L., Šulc, R.: Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties, J. Eur. Ceram. Soc., 35, 703 – 709, (2015).
40 Fletcher, R.A., MacKenzie, K.J.D., Nicholson, C.L., Shimada, S.: The composition range of aluminosilicate geopolymers, J. Eur. Ceram. Soc., 25, 1471 – 1477, (2005).
41 Provis, J.L., Harrex, R.M., Bernal, S.A., Duxson, P., van Deventer, J.S.J.: Dilatometry of geopolymers as a means of selecting desirable fly ash sources, J. Non-Cryst. Solids, 358, 1930 – 1937, (2012).
42 Rahier, H., van Mele, B., Biesemanns, M., Wastiels, J., Wu, X.: Low-temperature synthesized aluminosilicate glasses. Part I. Low-temperature reaction stoichiometry and structure of a model compound, J. Mater. Sci., 31, 71 – 79, (1996).
43 Steveson, M., Sagoe-Crentsil, K.: Relationships between composition, structure and strength of inorganic polymers. Part I — metakaolin-derived inorganic polymers, J. Mater. Sci., 40, 2023 – 2036, (2005).
44 Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surf. A, 269, 47 – 58, (2005).
45 Duxson, P., Provis, J.L., Lukey, G.C., Separovic, F., van Deventer, J.S.J.: 29Si NMR study of structural ordering in aluminosilicate geopolymer gels, Langmuir, 21, 3028 – 3036, (2005).
46 Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results, Chem. Mater., 17, 3075 – 3085, (2005).
47 Salmang, H., Scholze, H., Telle, R.: Ceramics, in German, 7th edition. Springer, Berlin, 2007.
48 Cole, S.S.: The conversion of quartz into cristobalite below 1000 °C, and some properties of the cristobalite formed, J. Am. Ceram. Soc., 18, 149 – 154, (1935).
49 Beneke, K., Lagaly, G.: A hydrated potassium layer silicate and its crystalline silicic acid, Am. Mineral., 74, 224 – 229, (1989).
50 Krivenko, P.V., Kovalchuk, G.Y.: Fly-ash based zeolite cements. In: Innovations and Developments in Concrete Materials and Construction. Thomas Telford, London, 2002; 123 – 132.
51 Perera, D.S., Vance, E.R., Finnie, K.S., Blackford, M.G., Hanna, J.V., Cassidy, D.J., Nicholson, C.L.: Disposition of water in metakaolinite based geopolymers, Ceram. Trans., 175, 225 – 236, (2006).
52 Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C, J. Mater. Sci., 42, 3044 – 3054, (2007).
53 Greiser, S., Sturm, P., Gluth, G.J.G., Hunger, M., Jäger, C.: Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites, Ceram. Int., 43, 2202 – 2208, (2017).
54 Macosko, C.W.: Rheology: Principles, measurements, and applications. Wiley-VCH, New York, 1994.
55 Poulesquen, A., Frizon, F., Lambertin, D.: Rheological behavior of alkali-activated metakaolin during geopolymerization, J. Non-Cryst. Solids, 357, 3565 – 3571, (2011).
56 Bulewicz, E.M., Pelc, A., Kozlowski, R., Miciukiewicz, A.: Intumescent silicate-based materials: mechanism of swelling in contact with fire, Fire Mater., 9, 171 – 175, (1985).
57 Langille, K.B., Nguyen, D., Bernt, J.O., Veinot, D.E., Murthy, M.K.: Mechanism of dehydration and intumescence of soluble silicates. Part I: effect of silica to metal oxide molar ratio, J. Mater. Sci., 26, 695 – 703, (1991).
58 Langille, K.B., Nguyen, D., Bernt, J.O., Veinot, D.E., Murthy, M.K.: Mechanism of dehydration and intumescence of soluble silicates. Part II: effect of the cation, J. Mater. Sci., 26, 704 – 710, (1991).
59 Horn, W.E.: Inorganic hydroxides and hydroxycarbonates: Their function and use as flame retardants. In: Fire Retardancy of Polymeric Materials. Marcel Dekker, New York, 2000; pp. 285 – 352.
60 Hornsby, P.: Fire-retardant fillers. In: Fire Retardancy of Polymeric Materials. 2nd edition. CRC Press, Boca Raton, 2010; pp. 163 – 185.
61 Pawlowski, K.H., Schartel, B., Fichera, M.A., Jäger, C.: Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends, Thermochim. Acta, 498, 92 – 99, (2010).
62 Wawrzyn, E., Schartel, B., Karrasch, A., Jäger, C.: Flame-retarded bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate): Adding inorganic additives, Polym. Degrad. Stab., 106, 74 – 87, (2014).
63 Shen, K.K., Kochesfahani, S.H., Jouffret, F.: Boron-based flame retardants and flame retardancy. In: Fire Retardancy of Polymeric Materials. 2nd edition. CRC Press, Boca Raton, 2010; pp. 207 – 238.
64 Beaird, A.M., Li, P., Marsh, H.S., Al-Saidi, W.A., Johnson, J.K., Matthews, M.A., Williams, C.T.: Thermal dehydration and vibrational spectra of hydrated sodium metaborates, Ind. Eng. Chem. Res., 50, 7746 – 7752, (2011).
Copyright
Göller Verlag GmbH