• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Interface Design and Processing of Bioactive Microporous Calcium Phosphate Coatings on Load-Bearing Zirconia Substrate

R. Sultana1, J. Yang2, Z. Sun3, X. Hu1

1 School of Mechanical and Chemical Engineering, University of Western Australia, WA 6009, Perth, Australia
2 Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
3 State Key Laboratory of Structural Analysis of Engineering Equipment, Dalian University of Technology, Dalian 116024, P. R. China

received January 18, 2017, received in revised form March 17, 2017, accepted April 17, 2017

Vol. 8, No. 2, Pages 265-276   DOI: 10.4416/JCST2017-00005

Abstract

This study presents the design and processing of interlocked interfaces of graded bioactive calcium phosphate coatings on a load-bearing zirconia substrate. Such interfacial structures can effectively enhance bonding between the coating and substrate, and suppress the residual stress across the interfacial region. Multiple coating layers with graded interconnected micropore structures, and common phases across the layer boundary have been considered to minimize the likelihood of interfacial cracking/delamination. The Focused Ion Beam (FIB) technique was used to reveal microscopic details of the interlocked interface formed by the common calcium phosphate and zirconia phases in both the microporous coating and the dense substrate. The interface microstructure and phase characteristics in the substrate and coatings were confirmed by means of FIB-SEM and X-ray diffraction (XRD) analysis respectively. A preliminary Finite Element Modelling (FEM) study shows that graded and interconnected micropore structures in multiple coating layers and tailored material composition can further reduce the interfacial residual stresses. The flexural and bonding strength of the composite and coating/substrate interface respectively have been characterized. A preliminary and limited in vitro cell test shows that the composite has no cytotoxicity to the fibroblasts. A successful interface design is crucial for bioceramic composite design that combines strength and bioactivity to deliver a potential candidate for load-bearing application.

Download Full Article (PDF)

Keywords

Interface design, interlocked interface processing, calcium phosphate/zirconia composite, mechanical strength, microstructure

References

1 Tomozawa, M., Hiromoto, S.: Microstructure of hydroxyapatite-and octacalcium phosphate coatings formed on magnesium by a hydrothermal treatment at various pH values, Acta. Mater., 59, 355 – 363, (2011).

2 Kim, H., Camata, R.P., Lee, S., Rohrer, G.S., Rollett, A.D., Vohra, Y.K.: Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings. Acta. Mater., 55, 131 – 139 (2007).

3 Kim, H.W., Kong, Y.M., Bae, C.J., Noh, Y.J., Kim, H.E.: Sol-gel derived fluor-hydroxyapatite bio coatings on zirconia substrate, Biomaterials, 25, 2919 – 2926, (2004).

4 Kim, H.W., Yoon, B.H., Koh, Y.H., Kim, H.E.: Processing and performance of hydroxyapatite/fluor-apatite double layer coating on zirconia by the powder slurry method, J. Am. Ceram. Soc., 89, 2466 – 2472, (2006).

5 Sun, L., Christopher, C.B., Karlis, A.G., Ahmet, K.: Material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings: A review, J. Biomed. Mater. Res., 58, 570 – 592, (2001).

6 Thian, E.S., Khor, K.A., Loh, N.H., Tor, S.B.: Processing of HA-coated Ti-6Al-4V by a ceramic slurry approach: An in vitro study, Biomaterials, 22, 1225 – 1232, (2001).

7 Ray, A.M.L., Gautier, H., Bouler, J.M., Weiss, P., Merle, C.: A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure, Ceram. Int., 36, 93 – 101, (2010).

8 Gauthier, O., Bouler, J.M., Aguado, E., Pilet, P., Daculsi, G.: Macro-porous biphasic calcium phosphate ceramics: influence of macro-pore diameter and macro-porosity percentage on bone ingrowth, Biomaterials, 19, 133 – 9, (1998).

9 Bignon, A., Chouteau, J., Chevalier, J., Fantozzi, G., Carret, J.P., Chavassieux, P.: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response, J. Mater. Sci. Mater. Med., 14, 1089 – 1097, (2003).

10 Hing, K.A., Annaz, B., Saeed, S., Revell, P.A., Buckland, T.: Micro porosity enhances bioactivity of synthetic bone graft substitutes, J. Mater. Sci., Mater. Med., 16, 467 – 75, (2005).

11 Shen, Z., Adolfsson, E., Hygren, M., Gao, L., Hawaoka, H., Niharra, K.: Dense hydroxyapatite-zirconia ceramic composites with high strength for biological application, Adv. Mater., 13, 214 – 216, (2001).

12 Currey, J.D.: What determines the bending strength of compact bone?, J. Exp. Biol., 202, 2495 – 2503, (1999).

13 Yang, J.Z., Sultana, R., Hu, X.Z., Huang, Z.H.: Porous hydroxyapatite coating on strong ceramic substrate fabricated by low density slip coating-deposition and coating-substrate Co-sintering., J. Eur. Ceram. Soc., 31, 2065 – 2071, (2011).

14 Sultana. R., Yang, J.Z., Hu, X.Z.: Deposition of micro-porous hydroxyapatite/tri-calcium phosphate coating on zirconia-based substrate, J. Am. Ceram. Soc., 95, 1212 – 1215, (2012).

15 Yang, J.Z., Sultana, R., Ichim, P., Hu, X.Z., Huang, Z.H., Yi, W.: Micro-porous calcium phosphate coatings on load-bearing zirconia substrate: Processing, property and application, Ceram. Int., 39, 6533 – 6542, (2013).

16 Yang, J.Z., Sultana, R., Hu, X.Z., Ichim, P.: Novel layered hydroxyapatite/tri-calcium phosphate-zirconia scaffold composite with high bending strength for load-bearing bone implant application, Int. J. Appl. Ceram. Tech., 10, 1 – 9, (2013).

17 Gross, K.A., Walsh, W., Swarts, E.: Analysis of retrieved hydroxyapatite coated hip prostheses, J. Therm. Spray., 13, 190 – 194, (2012).

18 Dalton, J.E., Cook, S.D.: In vivo mechanical and historical characteristics of HA-coated implants vary with coating vendor, J. Biomed. Mater. Res., 29, 239 – 245, (1995).

19 Evis, Z., Doremus, R.H.: Coatings of hydroxyapatite-nano size alpha alumina composites on Ti-6Al-4V, Mater. Lett., 59, 3824 – 3827, (2005).

20 Warren, R., Sarin, V.K.: Ceramic matrix composites, editor Warren, R., New York, 1992.

21 Braem, M., Doren, V.E., Lambrechts, P., Vanherle, G.: Determination of young's modulus of dental composites: A phenomenological model, J. Mater. Sci., 22, 2037 – 2042, (1987).

22 Adams, J.W., Ruh, R., Mazdiyasni, K.S.: Young's modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature, J. Am. Ceram. Soc., 80, 903 – 908, (1997).

23 Wang, Z.C., Ni, Y.J., Huang, J.C., Fabrication and characterization of HAp/Al2O3 composite coating on titanium substrate, J. Biomed. Sci. Eng., 1, 190 – 194, (2008).

24 Hayashi, H., Saitou, T., Maruyama, N., Inaba, H., Kawamura, K., Mori, M.: Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Sol. Stat. Ion., 176, 613 – 619, (2005).

25 Germain, M.A., Hatton, A., Williams, S., Matthews, J.B., Stone, M.H., Fisher, J., Ingham, E.: Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro, Biomaterials, 24, 469 – 479, (2003).

26 Gauthier, O., Bouler, J.M., Aguado, E., Pilet, P., Daculsi, G.: Macro- porous biphasic calcium phosphate ceramics: influence of macro pore diameter and macro porosity percentage on bone ingrowth, Biomaterials, 19, 133 – 139.

27 Bignon, A., Chouteau, J., Chevalier, J., Fantozzi, G., Carret, J.P., Chavassieux, P.: Effect of micro and macro porosity of bone substitutes on their mechanical properties and cellular response, J. Mater. Sci: Mater. Med., 14, 1089 – 1097, (2003).

28 Hing, K.A., Annaz, B., Saeed, S., Revell, P.A., Buckland, T.: Micro porosity enhances bioactivity of synthetic bone graft substitutes, J. Mater. Sci: Mater. Med., 16, 467 – 475, (2005).

29 Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell, J.A.C.: The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials, 28, 45 – 54, (2007).

30 Muralithran, G., Ramesh, S.: The effects of sintering temperature on the properties of hydroxyapatite, Ceram. Int., 26, 221 – 230, (2000).

31 Liao, C.J., Lin, F.H., Chen, K.H., Sun, J.S.: Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials, 20, 1807 – 1813, (1999).

32 Zhang, Y.M., Yao, H.M., Ortiz, C., Xu, J.Q., Dao, M.: Bio-inspired interfacial strengthening strategy through geometrically interlocking designs, J. Mech. Behav. Biomed. Mater., 15, 70 – 77, (2012).

33 Wei, G.B., Ma, P.X.: Nanostructured biomaterials for regeneration, Adv. Funct. Mater., 18, 3568 – 3582, (2008).

34 Lipski, A.M., Jaquiery, C., Choi, H., Eberli, D., Stevens, M., Martin, I.: Nanoscale engineering of biomaterial surfaces, Adv. Mater., 19, 553 – 557, (2007).

35 Zhang, S., Wang, Y.S., Zeng, X.T., Khor, K.A., Weng, W., Sun, D.E.: Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coating, Thin. Solid. Film., 516, [6], 5162 – 5167, (2008).

36 Jalota, S., Bhaduri, B., Tas, A.C.: Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds, Mater. Sci. Eng. C., 27, 432 – 440, (2007).

37 Wang, Y.Y., Li, C.-J., Ohmari, A.: Influence of substrate roughness on the bonding mechanism of high velocity oxy-fuel sprayed coating, Thin Solid. Film., 485, [1 – 2], 141 – 147, (2005).

38 Wang, S., William, R., Lacefield, T., Lemons, J.E.: Interfacial shear strength and histology of plasma sprayed and sintered hydroxyapatite implants in vivo, Biomaterials, 17, [20], 1965 – 1970, (1996).

39 Mohseni, E., Zalnezhad, E., Bushroa, A.R.: Comparative investigation on the adhesion strength of hydroxyapatite coating on Ti-6Al-4V implant: A review paper, Int. J. Adhes. Adhes., 48, 238 – 257, (2014).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Special Issue, 3/2025
Guest Editors:
Olaf Krause and Christian Dannert
Advances in Refractories

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH