• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Particle Size Effect on the Electrical Properties of Spark-Plasma-Sintered Relaxor Potassium Sodium Niobate Ceramic

C. Wang1, J. Chen1, L. Shen1, J. Rui1, X. Yang1, M. Zhu2, Y. Hou2

1 Logistics School, Beijing Wuzi University, Beijing 101149, P. R. China
2 Key Laboratory of Advanced Functional Materials of China Education Ministry, Beijing University of Technology, Beijing 100124, P. R. China

received December 11, 2016, received in revised form Febuary 2, 2017, accepted March 13, 2017

Vol. 8, No. 2, Pages 255-258   DOI: 10.4416/JCST2016-00116

Abstract

30-nm-grain-sized potassium sodium niobate ((K0.5Na0.5)NbO3 (KNN)) powders were obtained with the sol-gel method. From these powders as starting materials, high-density KNN ceramics with a relative density of 98.9 % and grain size of 500 nm were prepared with the spark plasma sintering (SPS) method. The processing parameters were a sintering temperature of 900 °C, sintering pressure of 30 MPa and sintering time of 3 min. The phase composition, microstructure and electrical properties of the ceramics have been investigated. The results show that, unlike common micro-grained ceramics, submicron-grained ceramics prepared with the SPS method show obvious dielectric relaxation (dispersion factor γ is 1.31). Meanwhile, the KNN ceramics exhibit good electrical properties such as dielectric constant εr = 753, piezoelectric constant d33 = 142 pC/N and electromechanical coupling factor kp = 0.41.

Download Full Article (PDF)

Keywords

Lead-free piezoelectric ceramics, potassium sodium niobate, submicron-grained, dielectric relaxation, electrical properties.

References

1 Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M.: Lead-free piezoceramics, Nature, 432, 84 – 87, (2004).

2 Guo, Y.P., Kakimoto, K., Ohsato, H.: Phase transitional behavior and piezoelectric properties of Na0.5K0.5NbO3 – LiNbO3 ceramics, Appl. Phys. Lett., 85, 4121 – 4123, (2004).

3 Wu, J.G., Zhang, B.Y., Wu, W.J.: Phase structure and electrical properties of barium-modified potassium-sodium niobate-based lead-free ceramics, J. Alloy. Compd., 651. 302 – 307, (2015).

4 Cheng, X.J., Gou, Q., Wu, J.G., Wang, X.P., Zhang, B.Y., Xiao, D.Q., Zhu, J.G., Wang, X.J., Lou, X.J.: Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries, Ceram. Int., 40, 5771 – 5779, (2014).

5 Lee, I.H., Lee, H.S., Kim, Y.H., Gil, S.K., Kang, D.H.: Effects of Al2O3 on the ferroelectric properties of sodium potassium lithium niobate lead-free piezoceramics, Ceram. Int., 39, S709 – S713, (2013).

6 Maeder, M., Damjanovic, D., Setter, N.: Lead-free piezoelectric materials, J. Electroceram., 13, 385 – 392, (2004).

7 Hou, Y.D., Zhu, M.K., Hou, L., Liu, J. B., Tang, J. L., Wang, H., Yan, H.: Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol-gel technique, J. Cryst. Growth, 273, 500 – 503, (2005).

8 Li, Y.M., Liu, H., Shen, Z.Y., Wang, Z.M., Hong, Y., Li, Y.Y.: Preparation of (K, Na)NbO3-based lead-free piezoelectric ceramic by microwave-hydrothermal method, J. Chin. Ceram. Soc., 39, 1922 – 1927, (2011).

9 Predoana, L., Barau, A., Zaharescu, M., Vassilchina, H., Velinova, N., Banov, B., Momchilov, A.: Electrochemical properties of the LiCoO2 powder obtained by sol-gel method, J. Eur. Ceram. Soc., 27, 1137 – 1142, (2007).

10 Linardos, S., Zhang, Q., Alcock, J.R.: Preparation of sub-micron PZT particles with the sol-gel technique, J. Eur. Ceram. Soc., 26, 117 – 123, (2006).

11 Krebs, J.K., Happek, U.: Optical spectroscopy of trivalent chromium in sol-gel lithium niobate, Appl. Phys. Lett., 87, 251910 – 1 – 3, (2005).

12 Li, B.R., Liu, D.Y., Liu, J.J.: Two-step sintering assisted consolidation of bulk titania nano-ceramics by spark plasma sintering, Ceram. Int., 38, 3693 – 3699, (2012).

13 Kumar, R., Chaubey, A.K., Bathula, S.: Synthesis and characterization of Al2O3-TiC nano-composite by spark plasma sintering, Int. J. Refract. Met. H., 54, 304 – 308, (2016).

14 Nuthalapati, M., Karak, S.K., Chakravarty D.: Development of nano-Y2O3 dispersed zr alloys by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 650, 145 – 153, (2016).

15 Wang, C., Chen, J., Chen H.L., Hou, Y.D., Zhu, M.K.: Preparation and properties of nanocrystalline potassium sodium niobate ceramics, J. Inorg. Mater., 30, 59 – 64, (2015).

16 Wang, C., Hou, Y.D., Ge, H., Y., Zhu, M.K., Wang, H., Yan, H.: Sol-gel synthesis and characterization of lead-free LNKN nanocrystalline powder, J. Cryst. Growth, 310, 4635 – 4639, (2008).

17 Uchino, K., Nomura, S.: Critical exponents of the dielectric constants in diffused-phase-transition crystals, Ferroelectrics, 44, 55 – 61, (1982).

18 Chattopadhyay, S., Ayyub, P., Palkar, V.R., Multani, M.: Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3, Phys. Rev. B, 52, 13177 – 13183, (1995).

19 Park, Y., Lee, W.J., Kim, H.G.: Particle-size-induced diffuse phase transition in the fine-particle barium titanate porcelains, J. Phys. Condens. Mat., 9, 9445 – 9456, (1997).

20 Zhang, L.M., Zhang, B.P., Li, J.F., Wang, K., Zhang, H.L.: Normal sintering of lead-free piezoceramic potassium sodium niobate and its electrical properties, J. Chin. Ceram. Soc., 35, 1 – 5, (2007).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH